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Abstract

The (esign of large, complex digital circuitry requires highly skilled engineers. Much

of the time spent by these engineers in the design phase involves tasks that are repetiti've.

tedious, and slow. 'f these repetitive tasks are automated, the engineer can spend more

time managing the design process and produce a better-quality design in less time. Logic

programming can be used to automate design tasks. even those that reqtire a high de-

gree of skill. This thesis investigates several aspects of the digital circuit design proces-

that involve pattern-matching ptradigms suitable for encoding in the logic programming

language Prolog.
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Logic Programming in Digital Circuit Design

. Introduction

1.1 Background

Several Computer Aided Design (CAD) systems are used at the Air Force Institute

of Technology (AFIT) to design electronic circuits. These CAD systems function with

conventional software and work much like a hammer or screwdriver in that the quality of

the final product is a direct function of th,. -1ll of the craftsman. Computers run with

conventional CAD software lack the inference ability associated with computers which

use artificial intelligence (AI) languages. When pattern-matching Al languages are used

instead of conventional CAD software, computers can draw "intelligent" conclusions con-

c.erning electronic circuit structure from simple facts. Computers using AI software can be

useful in discovering design mistakes before they become a problem [46].

AFIT currently supports research which relies heavily on conventional CAD systems.

As technology progresses and electronic circuit design becomes increasingly complex, the

opportunity for making a design error increases significantly. Mistakes in circuit design are

always costly to correct unless they are discovered in an early phase of the design process.

Design errors can be found and corrected before they become a serious problem if CAD

systems are used which incorporate logic progra.min. g and knowledge.based rcasoning.

The special character of logic programming with an Al language such as Prolog can

be exploited to automatically design electronic circuits through knowledge-based reasoning

[14:59]. Employing knowledge-based reasoning in the circuit design process can be useful in

ensuring the functional correctness of a particular specification, especially when the design

involves tedious tasks that are prone to human error [5:100].

1.2 .5tatement Of The Problem

Logic programming can be used in the design procebs during any phase which is de-

pendent on pattern-matching. Circuit modelling. bimulation, and transformation are some

of the processes whose outcomes depend on the ability of the design engineer to detect

recurring patterns. The pattern-matching ability of Prolog can be used to automate these
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design processes, producing quicker, more accurate, and more consistent results. Prolog's

built-in depth-first search strategy guarantees that all possible solutions to a problem will

be found. This thoroughness can be used during many phases of the engineering process

to ensure that the best solution to a given problem is found. This thesis investigates appli-

cations of logic programming in digital circuit modelling, simulation, and transformation.

1.3 Assumptions

The reader should have a basic understanding of logic programming with Prolog. If

that is not the case, a good source for reference would be either Programming in Prolog

[16] by W.F.Clocksin and C. Mellish or Prolog Programming j,. Artificial Intelligence [41

by Ivan Bratko. Several outstanding articles on the subject are also available for reference

[1, 2. 3, 15, 17, 18, 19, 20, 24, 28, 35, 37, 38, 40, 47]. Chapter 2 contains an introduction to

some of the more important aspects of logic programming which are central to this thesis.

Chapter 2 is not intended to be a tutorial or extensive, all-encompassing discussion, but

rather a beacon for the less informed reader to follow.

1.4 Scope

This thesis will focus on several issues associated with digital circuit design and ways

in which logic programming can be exploited to automate circuit-design processes. A brief

outline of logic programming with Prolog is presented. Aspects of Prolog which are central

to the thesis are explained. Logic programming in general and the pattern-matching ability

of Prolog in particular are used to develop algorithms which can be used to assist digital

circuit design engineers by automating selected segments of the design process. Digital

circuit modelling, simulation, and some aspects of circuit transformation are discussed.

1.5 Approach/Methodology

After a brief explanation of some of the features of Prolog used in this thesis, methoWk

of digital circuit modelling with Prolog are investigated. Following the development of a

modelling protocol, a simple transformation process, extraction, is presented. Extraction

uses the pattern-matching capabilities of Prolog to detect recurring patterns in digital cal-

cuits. Several examples are shown. Circuit simulation is also discussed. Several important

traits of Prolog make this language an ideal one for simulating digital circuit operation.

Finally, another transformation process, called specialization, is developed. SpecializatioL
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can be used to eliminate one class of redundant components from a circuit, resulting in a

more economical design.

1. 6 Overview

Tile present chapter introduces applications of logic programming to digital circuit

design. The concepts of modelling, simulation, and transformation are mentioned and the

objectives of this research along with an overall view of assumptions and methodologies

are stated.

Chapter 2 presents a brief history of logic programming together with a superficial

introduction to Prolog. The main focus of this chapter is on Prolog and aspects of the

language which can be exploited to aid in the design of digital circuitry. Chapter 2 is based

on an extensive review of current as well as past literature on the subject.

Chapter 3 addresses the use of Prolog in modelling digital circuits. It shows how

different paradigms are used in digital circuit modelling. Several examples illustrate the

different methodolcgies.

Chapter 4 discusses in detail one aspect of circuit transformation, extraction. A

simple extraction algorithm is developed and applied to a circuit composed of NAND-

gates. The circuit is tested and all full-adder combinations are extracted.

Chapter 5 discusses the application of Prolog to the simulation of digital combina-

tional and sequential circuits. Algorithms, along with sample simulations, are presented.

A digital circuit simulator that operates with a subset of the 7400 series of TTL integrated

circuits is presented at the end of the chapter. The simulator is easy to use and operates

much faster than simulators previously developed at AFIT.

Chapter 6 highlights another transformation problem, that of attempting to achieve

a more efficient design by identifying and eliminating unused components. The process.

called specialization, eliminates all components that have unused outputs from a circuit

and automatically rewrites the modified circuit and its connections.

The final chapter, Chapter 7, discusses the strengths and weaknesses of the algorithms

presented and makes recommendations for the direction of future research.

Throughout this thesis, the following convention for describing logic component. mill

be adopted:

1-3



11, An Overview of Logic Programming

2.1 Some Important Developments in the History of Aulomated Reasoning

2.1. Early Developments. Automated reasoning is based on the theory of predi-

cate calculus. Predicate calculus was invented in 1879 by Gottlob Fr6ge, a mathematician

[42:107]. Fr~ge's goal was to develop a system that could be used to analyze the formal

structure of pure thought. He called his system Bcgriffsschrift which loosely translates to
"notation for concepts". Fr6ge envisioned his system as a universal language that could

be used to represent every form of rational thought. The represented thoughts could be

manipulated in a precise and mathematical ay in order to deductively reason about them.

Fr~ge accepted that his system was complete. Formal proof of the completeness of Fr6ge'b

system of predicate calculus did not come. however, until 1929 and 1930 whel, Thoralf

Sk6lem, Kurt G6del and Jacques Herbrand proved independently that Frdge's system was

a complete system of notation [42:1081. llerbrand had several versions of the proof pro-

cedure; one version used the process of unification which later played a major role in the

development of logic programming.

Another important theoretical contribution to automated reasoning came in 1936

when A.M. Turing showed that it was possible to invent a machine that could be used to

compute any sequence of numbers that were calculable by finite means. He also showed

that ),is "automatic machine" could find all provable formulae of the predicate calculus

provided the notation was systematic and in olked a finite number of symbols [48:2521.

The role of logic in the early development of the field of artificial inteligence was lim-

ited to meta-level reasoning about program correctness and attempts to automate theorem

proving. In 1955, Evert Beth made the first attempt at programming predicate calculus

proofs on a computer. The process was computationally intensive and only small proofs

could be done [42:108]. A major breakthrough came in 1965 when J.A. Robinson published

his resolution principle.

Resolution. Resolution was a major 3tcp forward in the field of automated theorem

proving as well as logic programming and i. one of the most powerful theorem prosing

technioues currently in use. It uses Herbrand'b process of unification, a generalized form of

pattern matching [11:70-97). The resolution process creates the least specialized or most

general common expression from two atomih relations by substituting for like variables in

both of them [24:2]. The resolution process is applied to problem statements written in

clause Torm. A logic clause is an expression of the form
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head

B1, .... :B,---- A,.,.A(m,n > O)

body

where atoms Bl,.. .,Bm constitute the head and represent zero or more conclusions. The
body is made up of goals A 1,..., A, and represent zero or more conditions [44:309]. If the
clause contains the variables xl,...,x,, it can be read as

for all Xl,...,Xk

if A1 and ... and A,, then

B, or...or Bn.

If n = 0, then the clause is interpreted as

for all X1 ,. . .,Xk

B, or... or Bmn.

If m = 0 then the clause is interpreted as

for no X1,.. . ,xk

A, and.. .and A,.

If m = n = 0 then the clause is interpreted always to be false [36:4261. The basic prin-

ciples of the resolution process can be illustrated in a simple way within the confines of

propositional logic. Consider the two expressions

clause 1. L1 vL2V ,-L3

clause 2. L4v L5v L3

where the Ls are arbitrary literals and -, represents the negation of a literal. Clauses are

expressed as the disjunction (v) of literals. The literals are expressed as conjunctions of

indivisible atoms. An atom is opposed if it appeai directly iii one claube and negated in

another (8:7]. In the two expressions given above. L3 is opposed. The resolvent of the

two expressions can be generated as follows:

1. Form an expression that contains all literals of the two parent expressions.

2. Delete the opposed pair of literals.

3. Delete any repeated literals.

Thus the resolvent of the example expression is

LI v L2 v L,1 v L5.

The resolvent expression generated from the tmo parent expressions are a logical conse-

quence of the parent expressions. A given set of expressions will produce nothing but
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legally-inferred logical consequences when subjected to the resolution process. The au-

tomation of this process resulted in the development of the logic programming language

Prolog.

2.1.2 The Emergence of Prolog. The origin of Prolog can be viewed as the conflu-

ence of two different endeavors: Alain Colmerauer's interest in natural language processing,

and Robert Kowalski's research into logic and theorem proving [18:26]. Their independent

efforts resulted in the development of the first efficient programming language based on

Fr6ge's system of logic [47:96]. Prolog, short for Programmation en Logique [37:38] is based

on a restricted form of automated reasoning in which logic clauses have no more than one

conclusion associated with a set of conditions [42:1111. Prolog programming involves ex-

pressing information in Horn-clause form (discussed in section 2.2.1) and, using Robinson's

resolution process, forming new deductions by reasoning about the logical content of the

information. A Prolog interpreter can be thought of as a resolution based theorem-prover.

Clocksin and Mellish [16] describe programming in Prolog as:

1. Declaring some facts about objects and their relationships;

2. Defining rules about objects and their relationships, and

3. Asking questions (queries) about objects and their relationships.

2.2 Prolog: A Logic Programming Language

2.2.1 Ilorn-Clauses. Logic Programming is a restricted form of auton.tted reason-

ing based on the use of Ilorn-clauses. Horn-clauses are logic clauses in which no more

than one conclusion is associated with a set of conditions. Horn-clause structure can be

expressed as any of the forms found in Table 2.1.

Table 2.1. Horn-clause forms

Horn-Clause Form j Prolog Function]
B --- fact

B - A1,. .... I, rule
A, . .A,) query 1

Horn-clause syntax allows the conjunction of zero or more conditions (also known

as antecedents) in the clause's body to imply at most one conclusion (also known as a
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consequent) in the c:iuse's head [7]. A Horn-clause states that for all the possible values of

the variables appearing in the clause, if all the ,-onditions of the conclusions hold, then the

conclusion is true. Every variable is understood to be universally quantified over the clause

in which it appears; hence each clause stands alone. Horn-clauses can be thought of as

procedural definitions. The head of the clause, accompanied with corresponding argumentb

(explained in more detail later), represents the procedure's name. The conditions of tiik

clause, accompanied with their corresponding arguments, represent the procedure's body.

All clauses with the same head/argument structure are collectively called a procedure. As

shown in Table 2.1, Prolog clauses occur in three forms: facts, rules, and queries.

Facts. A fact is the most basic statement in Prolog. Facts are conclusions or

consequents that have no conditions or antecedents; facts thus form simple statements

about objects and their relationships. A fact announces that some relation is true. A

finite set of facts constitutes a simple logic program. Sme examples of facts are shown in

Table 2.2.

Table 2.2. Examples of Prolog facts

Prolog Fact Meaning
likes(joe,apples). "joe likes apples."
friend(bonny,joe). "bonny is a friend of joe."
mother(sally,sue). "sally is the mother of sue."

Rules. A single program-clause can either be a fact or a rule. Rules define compli-

cated relationships among objects by announcing that the head of the rule is true if all of

the goals in the body of the rule are true. A rule has the form

head

Bi :- A,,...,A, (n >0)
body

which is the same form as that given earlier in Table 2.1 for Horn-clause rules. Note that a

fact is a special form of a rule when n = 0. The - syi. oc is used in Prolog programming

to replace the - and can be read as the word "if" or "is implied by" [34:1451. Some

examples of rules are
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Rule Meaning

happy(X) "Any X is happy if
has(X,Y), X ? , any Y and
dog(Y). Y ilog."

likes(X,Y) ",y .. .,s any Y if
friendskX,Z), :. friend of any Z and
likes(Z,Y). Z I es Y."

Prolog programs are composed of facts ai.," es. Facts are stored with rules. A

collection of facts and rules is commonly refer-,. o.s a dtabase. There i. no need in

Prolog programming to differentiate oetween pro .ams and data.

Queries. Queries provide a means r ir retrieving information from a logic program.

A query has the special form

? -Gl,..D .,G,.

.A query initiates the execution of a program and is tyically typed at the terminal with

the inte:preter running and the desired program loaded. Prolog solves a c uery by forming

a set of variable bindings that makes each of th. goals in the query consistent with the

facts ard rules in the program. This process can be illustrated with th. following example:

fact 1. lik.,(s joe,apples).

fact 2. friend(bonny,joe).

rule 1. likes(X,Y) "-

friend(X,Z),

likes(Z,Y).

The interpreter now knows two facts that state that joe iikes apples and bonny is a friend

of joe. The single rule expresses a more ,:omplex relationship. Any X likes any Y if X is

a friend of Z and Z likes Y. The database, once loaded, can be interrogated with queries.

Consider the following query

?- likes(joe,X).

The Prolog interpreter will start at the top of the database and search for a fact or rule

whose head matches our query. The interpreter knows it is looking for facts or rules named

likes with two arguments, the first of which mn,,t be "joe" or able to be instantiated to
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"joe". The second variable X has not yet been instantiated. The first fact encountered

that meets all the requircnents is fact I if X is instantiated to "apples". The interpreter

(assuming Prolog-1 is being used) will respond to our query with

X = apples

more (y/n)? y

no

The interpreter can not find any more facts c. rules that it can match with our query.

As a ..iore complex example, .,o, sder the compound query

?-likes(joe,X),likes(bonny,X).

This query asks the interpreter to find some inbtantiation for the variable X that both "'joe"

and "bonny" like. The following sequente of events will occur:

1. The first goal of the query succeeds bpcause of fact number 1 with X instantiated to
C:apples".

2. "bonny" can not be matched to any likes fact so the second goal can only succeed
through rule 1. The rule is invoked with X instantiated to "bonny" and the variable
Y instantiated to "appies".

3. The first gal of rule 1 succeeds with X instantiated to "bonny" and Z instanti.-f,,
to "joe" via fact 2.

4. The second goal of rule I then succeedz i.h 7 i tanliatcd to "joe" and Y to "'apples'
usiltg iact 1 again.

.5. Sine both goals of the qtieiy goal succeeded. he query itself succeeds with X instan-
tiated to "apples".

The interpreter's response to our query would then be

X = apples

more (y/n)? y

no
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2.2.2 Programming in Prolog. There are at least three styles of programming lan-

guages: procedural, functional, and relational [20].

1. Procedural - In a procedural language, the steps that will eventually produce the
desired result are explicitly specified. The programmer must specify, step by step.
how something is to be done. The execution of a procedural program is understood
by tracing through each step of the p-,)cess.

2. Functional - In a functional language, i, -thods for calculating values are defined.
Operationally, expressions are evaluated until the final value is determined.

3. Relational - A relational language, also known as a logic programming language.
specifies relations among values. A logic program can be vie:,-ed as a collection of
relations with each clause specifying some con(.ition under which the relation holds.
Logic programming is declarative: the programmer specifies "what" is to be done,
leaving the "how" largely up to the computer.

Prolog programming uses relatic.i withir a logical structure to represent knowledge.

Deductions, based on the represented k:,ov:edge, are used to form logical consequences.

Prolog programming allows knowledge ,) be viewed both procedurally and declaratively.

The procedural aspect of knowledge representation is found in the order of execution

of the program statements. The declarative aspect is embodied in the logic statements

that describe the problem domain and how to solve problems .n .hat domain. The logic

programmer is less concerned with how the machine will solve a particular problem and

more concerned with the accuracy of the defined relationships of :he problem and how they

interact and hold under various circumstances. Ideally, the Prolog interpreter takes care

of the "how" aspect of problem solving, freeing the programr-r to focus on the relations

characd.erizing a problem 45:49).

2.2.2.1 Prolog Syntax. Prolog uses only one data-type, the term [7]. Any

term has one of three forms:

1, a constant.

2. a variable, or

. a structure.

A constant is either an atom or a number. An atom can be represented either by a

sequence of alphanumeric characters beginning with a lower-cas, letter or by a sequence

of characters enclosed in single quotes. A variable in Prolog stands for some definite

but unidentified object. A variable is expressed by a sequence of alphanumeric character-

or underscores, beginning Jith either an upper-case letter or an underscore. Variables in
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Table 2.3. Prolog terms

Constants Variables
a A
ab Ab
a-b AB

'AB ' .ABS

Prolog do not designate storage-locations in memory as do variables used in conventional

languages. Instead, variables are used for pattern-matching within a term. Table 2.3 gkieb

some examples of simple terms.

A compound term is composed of a functor and a sequence of one or more arguments

and is commonly referred to as a structure. A structure has the form

argurn nI

foo (t-, 7

fun¢aor

where foo, the functor (or predicate), is an atom and t1 ,. . ., t,,, the arguments, are terms.

The number of arguments is referred to as the arity of the term. The Prolog interpreter
distinguishes among the different forms of structures by the name of the functor and itb
arity. A constant is considered to have an arity of zero. Table 2.4 gives some examples of

structures.

Table 2.4. Examples of Prolog structures
Prolog Structure 1' Functor Arity

student (name (f irst (tom)) . st:udent I

likes(joe,bonny) likes 2 I
family(dad(joe),mom(bonny),children(jill,joshua)) I family 3

Lists. An important data structure used in logic programming is the list. A list
is a sequence of any number of ternis such as 6. bob, (fred(man).sally(woman)). and four.

Written in Prolog, this list would appear as

[6.bob.(fred(man),sallv(woman)],fourj.

A list is expressed with the following format
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head

tail

where the head of a list is the first term (or element) in the list. The head of the list in

the above example is the element "1". The tail of a list is itself a list that consists of

everything in the original list except the head. The tail of the above example is the list

[2,31. Square brackets "[1" are used to denote an empty list. Throughout this thesis a list
will be typically represented as [XIY] where X denotes the head and Y denotes the tail. The

list [1,2,3], written in this form would be [1,1[2,31). Sometimes it is convenient to denote

more than one element at the front of a list. To show this, the representation is [XY,ZIY]

where X, Y, and Z are the first three elements of the list and Y is the tail. The list (1,2,31,

written in this form would be [1,2,31[]].

2.2.2.2 Prolog's Search Strategy. A useful concept in the field of artificial

intelligence is the search-tree [45:50]. A search-tree is a mapping onto a tree-structure of a

search-process. It is instructive to study the search-tree produced by the Prolog interpreter

in the execution of a problem. Consider the following program of simple facts.

a(1).

a(2).

a(3).

b(0).

b(2).

b(3).

and the following query input at the screen prompt:

?- a(X),b(X).

The query literally translates to "'find sonic instantiation for the variable X such that a(X)

and b(X) are true". This problem has two solutions, X = 2 and X = 3. A graphical

representation of the search-tree for this problem is found in Figure 2.1. Prolog's built-un

search mechanism is depth-first , meaning that it will start at the leftmost branch of Ow,

search tree, following it to the bottom before trying a new branch. This is because thy

interpreter scans the database from top to bottom in an attempt to satisfy the query. In

the example, the interpreter is initially interested in finding a fact with the functor "..

a(X) is the first goal of the query. The first -a" fact encountered in the search is a(l):
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a(X),b(X).

a(l) a(2) a(3)

b(O) b(2) b(3) b(O) b(2) b(3) b(O) b(2) b(3)

Fails Fails Fails Fails Succeeds Fails Fails Fails Succeeds

Figure 2.1. A search-tree.

therefore X is instantiated - the value of I and the second goal of the query becomes b(' ).

The interpreter unsuccessfully looks at b(O), b(2), and b(3) before discarding a(i) as

a possibility. The interpreter now drops down to the next "ae fact which is a(2). The

interpreter picks up a(2) as a possibility for satisfying the query with X instantiated to

"2". It then looks at b(O) and finding no match proceeds to b(2) where a successful

match is found. At this point the match is reported to the screen and the user asked if

more solutions are desired. Typing "no" at the screen prompt will terminate tite search.

Typing .yes" will cause the search to continue from the point where thle interpreter left

off. Since a(2) can not be matched with b(3). a(2) is discarded and a(3) is picked up.

The interpreter tries to match a(3) with b(O) and b(2) before finding a matd %ith b(3).

This second match is reported to the screen as X = 3 and at this point, the database ha.,

been searched exhaustively and no more matches exist. The search-tree of Figure 2.1 has

been completely traversed from top to bottom, left to right.

2.2.2.3 Control of Program Exccution. A conventional algorithm written in

either a procedural or functional language is thought to be described as:

program = description of (logic + control)
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with the logic component describing the domain-specific part of the algorithm and the

control part involving the solution strategy [36:.1291. Algoritluns written in a procedural

or functional language must specify both the logic and the control components: they are

intermixed inseparably in the code (33:99]. Algorithms written in a relational language

need only specify the logic component (,f the problem unless. for reasons discussed later.

it is advantageous for the programmer to modify the control component.

Prolog only requires the user to provide facts and rules describing relations that are

pertinent to the problem domain. Control, often viewed as the "how- of the problem.

is ideally left up to the machine. In logic programming, control and logic are separate

components of a program and may be specified separately. An algorithm written in a logic

programming language can be described as 1361:
algorithm = logic + control

where the logic and tlhe control components can be dis.oint. The order of appearance of

the clauses in a logic program should have no logical (declarative) significance because each

clause states some property of the predicate independently. This holds true for Prolog as

long as control of program execution is left entirely up to the interpreter.

Unmodified Control. As an example of a problem that can be solved by allouing

the Prolog interpreter to have full control, consider the task of determining whether an

element is a member of a list. Any element X is a member of a list if

either (W): X is the head of the list

or (2): X is a member of the tail of the list.

These re'ations are described in Prolog syntax as follows:

rule I. -ember(X,[XlRest]).

rule 2. me-ber(XjYlResz)
member(X,Rest).

The name of this procedure is member. The ,irst llorn-claise states that the el,,ment X

is a member of any list that has X as its head and Rest as its tail. If the element X i-.

the element we are searching for and it oc:r- at the head of the list then memnership is

determined and true is returned to the invoking call. If the element X is not the I-eall of

the list, the first clause fails and the second clause is invoked. The second clause states

the second condition for membership: that is. th,, element X is a member of a list with an

2-I



element Y as its head and Rest as its tail if the element X is a member of Rest. The logic of

determining nembership is completely specified while the control aspect is left completely

unspecified, leaving the interpreter to solve any queries regarding member as it pleases.

Note that rule 1 could be s%,itched with rule 2 and only the efficiency of the execution of

the procedure would be affected.

Modified Control. Sometimes it can be advantageous to modify the control com-

ponent in a logic program. Modification is usually done to improve the efficiency of the

algorithm. Efficiency can be enhanced by using a special term in Prolog called the "cut."

represented by the symbol "!". A cut allows sut.-eeds as a goal and allows a programmer

some control over the search mechanism by limiting the interpreter's access to specified

branches of the search tree. The effect of the cut limits the number of solution: to the first

one found. once the cut has been encountered. Consider this modification to a pre% ious

example.

a(1).

a(2) -

a(3).

b(O).

b(2).

b(2).
b(3).

If the database is queried with the same query as was used previously (?- a(X) ,b(X) .

the interpreter will proceed down the new search-tree, finding the first match betweeu

a(1) and b(1). Proceeding on, the interpreter picks up a(2) and encountc , the cut. The

interpreter tries to match a(2) with b(O) and b(1) as it did in the previous example.

before finding a match with b(2). Here is where the difference between the two exanple

lies. When the second match is reported to the screen, the interpieter will not continue to

search for additional solutions. Clearly the database contains one more match, namely X

= 3, but the cut effectively "pruned" any other possible match after a(2) from the search-

tree. If the first fact of the program (a(1)) were swapped with the second one (a(2) "-

!), the search-tree would be even more severely pruned . The execution of the query %ould

result in only one answer, X = 2.

It is important that the modification of the control strategy should only affect the

behavior of the computer and not the meaning of the program [36:429]. For example.

a programmer may want to go to a local convenience store. If he were to write a logiL
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program outlining all the methods of transportation available, along with the constraints

relating them, the computer could be used to suggest the best method of travel given a

set of existing conditions. One such condition might be that it is raining; in such a case,

walking would not be appropriate. The control of the program's execution could be altered

to exclude exploring any modes of transportation that would expose the programmer to the

elements. By doing so, the execution of the program is made more efficient by immediately

ruling out entire classes of inappropriate solutions: no time is wasted exploring unfruitful

paths.

Importance of Ordering Clauses and Goals. Limitations imposed by the in-

terpreter require the programmer to give careful consideration to the order in which the

clauses of a program and the goals of a body are listed. Improper ordering of clauses can

affect the efficiency of the search process and, in some cases, cause the program not to

execute properly. Consider the rule

ancestor(X,Y)

ancestor(X,Z),

parent(Z,Y).

which can be interpreted literally as "Y is an ancestor of Y if X is an ancestor of Z and Z is a

parent of Y". The ordering of the two goals of the body makes logical sense but when the

Prolog interpreter attempts to invoke the procedure, the first goal recursively calls itself.

creating an infinite loop. If the two goals in the body are swapped, the logical meaning of

the rule is preserved but the interpreter will attempt to satisfy the parent-goal first and an

infinite loop will not result. Often, careless ordering of clauses will not cause a program to

execute improperly but will affect the efficiency of execution. Efficie 1 -y of execution can

be affected by

1. the order of appearance of procedures in a program;

2. the order of appearance of clauses in a procedure; and

3. the order of appearance of goals in a rule body.

2.2.2.4 Recursion. The second clause in the member example given earlier

warrants further discussion as it exploits the concept of recursion. Recursion is one

of the most powerful features of Prolog because recursion can be exploited to perform

repetitive tasks [6]. In nember example. each time X is not the element at the head of
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the list, rule 1 fails..and the interpreter descends another level of recursion until X occurs

at the head of the list or Rest is exhausted. Each time rule 2 is invoked, the tail of our

list will be successively divided into an instantiation for Y and Rest until the end of the

list is encountered. The end of a list is denoted by an empty list ("[]") and is used to form

a boundary condition. Using the empty list to form a boundary condition for the member

example can be interpreted literally as telling the Prolog interpreter "if you look through

the entire list of candidate elements and cannot find an occurrence of X then stop your

search because X is not a member of the list". For this particular example, the boundary

condition does not need to be stated explicitly because the interpreter will progrebsiely

examine the elements of the list starting from the head and working towards the tail. If the

end of the list is encountered ([]', there could not have been an occurrence of X in the list:

hence, the search fails and the interpreter stops looking. Figure 2.2 shows the execution of

the simple question, "is 3 a member of the list [1,2,3]?", formally stated in Prolog as the

query ?-member(3, [1,2,3] ).

Most logic problems require the boundaUry conditions to be explicitly declared in order.

to avoid infinite loops. If a non.member procedure were desired, the boundary condition

would have to be explicitly defined in order to instruct the interpreter when to stop looking.

The boundary condition, written in Prolog, would look like

non-member(X, [])

and would be literally interpreted as "it is true that X is not a member of an empty list".

The remainder of the prolog code for non-member is

non-member(XrYIL])

X \== Y,

non.member(X,L).

where \== stands for strict inequality.

2.2.3 Summary. Some of the virtues of Prolog have been briefly explained in this

chapter. A general summary of the characteristics that make Prolog useful in digital circuit

design are (27:161:
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?-member(3,[1,2,3]).

rule 1 rule 2

Xl = 3r X 1=3

Yl =1I Y =1

Restl 1 (2,31 Rest 1 = [2,3]

fail
membcr(3,[2,3]).

3~I

rule I rule 2

X2 =3 X2 =3

Y2 =2 Y2 =2

Rest2 =[3] Rest2 =[31

fail
\member(3,[3]).

rule I

Y3 = 3

Rest =[

Figure 2.2. Recursion levels for the query ?-member(3, [1,2,3])
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1. It carries out symbolic inferencing. New facts or rules can be inferred from existing
ones.

2. It uses an orderly search process in its execution to find all possible solutions within
a problem space.

3. It can be treated as both a declarative and a procedural programming language.
The execution of a program may be altered by changing the structure of the logic
description of a problem or the sequence of execution or control may be altered.

4. Prolog programs can modify themselves. A program can construct a new fact or
rule as it runs and add the fact or rule to itself. Facts or rules can also be retracted
from the rule base. This means that Prolog programs can "learn" as they proceed
through the execution of a program [191. An example of this can be found in the the
TTL digital circuit simulator presented in Chapter 5. The simulator derives rules
concerning the gate-level structure of the circuit under test and uses these new rules
to simulate the circuit's operation.
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1II. Modeling Digital Circuits with Prolog

3.1 Introduction

The versatility of Prolog makes it ideal for modeling logic circuits. Functional and

physical characteristics of primitive gates as well as higher-level modules can easily be

modeled. Prolog supports the modeling of circuits in a hierarchical fashion. Mode .

circuits hierarchically allows lower-level intra-modular connections to be "hidden' from

the view of upper-level circuit descriptions. This allows the design engineer to specify the

internal connections of a module once as a template and then to reuse the template as

needed to design new circuitry.

3.2 Circuit Composition

A circuit is composed of sets of modules and their interconnections. Modules can be

defined hierarchically, where modules are defined in terms of other modules. At the bottom

of the hierarchy reside the primitive modules whose identity depends on the technology

being modeled. Digital designers may consider gates or individual packages to be primitive

while a VLSI designer would consider transistors to be primitive [14:61]. Circuits that lack

any hierarchical structure are referred to as "flattened" circuits.

3.3 Circuit Representation

There are three basic methods, described in the following paragraphs, used to rep-

resent digital circuits [14] in Prolog. The functional method uses terms to functionally

describe circuits, the extensional method uses a database of facts to assert connection

relationships, and the definitional method uses formulae to model the circuit definitions.

The Functional Method [14:61]. This method can be used to represent circuits

in which a single output signal is a function of several input signals [10:391]. Functions can

have an arbitrary number of inputs but represent only one output. Inputs are expressed

as a module's arguments. Modules, that can be either higher-level or primitive, are named

according to the function they perform. For example, the term

input input
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Figure 3.1. XOR-gate function composed of NAND-gates.

would be used to express a two-input OR-gate. Figure 3.1 shows an example of a higher-

level circuit constructed of NAND-gates. Using the functional method, the output signal,

Z, would be expressed as

nand(nand(X,nand(X,Y)),nand(nand(X,Y) ,Y)).

Note that the connectional relationship between modules is purely functional with the

syntactic form determining the connections.

This type of representation has two main disadvantages [10:392]. First, only circuits

that have no feed-back loops can be described: therefore most sequential circuits can not be

accurately modeled with this method. Secondly. each output must be represented with a

separate expression. This makes hierarchical representations described with the functional

method difficult to understand.

The Extensional Method [14:62] The extensional method represents each mod-

ule and its connections as separate facts. In the example below, the module predicate has

the following general form:

module(Name,List-of input.ports,List-ofoutput-ports).

The binary predicate connect describes the connections between the ports in the "ollowing

manner:
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Figure 3.2. Sequential circuit for Extensional example.

connect (Specific-port ,Connection).

Connections between modules are specified with the connect predicate. This pred-

icate has two arguments, the first indicating the module type and the second indicating

the connected port [14:62]. Figure 3.2 would be described as
4

module(xor, [a,b] ,[c).

module(not, [a] , [b]

module(jkff,[j,c,k],[q,nq]).

connect(xor(a),out).

connect (xor(b),x).

connect(xor(cIcjkff(j))

connect (xor(c),not(a)).

connect(not(b), cjkff (k)).

connect(clock,cjkff(c)).

connect(jkff(q),out).

The module and connect predicates should be considered as generic templates. When

the arguments of the predicates are instantiated, the combination of both predicates repre-

sents an instance of a circuit component (prov ided by the module predicate) and a complete

description of the component's circuit connectionb (provided by the connect predicate)

[1,1:63]. Only one module fact is needed for each circuit component to be modeled. flow-

ever, a large number of connect predicates could be needed to describe the component's

circuitconnectivity; the exact number requie(I is dependent on the number of other circuit
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devices to which the component is connected. Since the simplest component must have

at least one input node and one output node, the minimum number of coanect facts per

component is two. Note that the XOR-gate module described in the code given above

needs one module fact and four connect facts to completely describe its relationship in

the circuit.

This method can be used to model sequential as well as combinational circuits. How-

ever, because the modules are represented with no syntactic relationship between them-

selves ard their connections (one module fact for each module type and two or more

connect facts for the connections), some operations such as circuit transformations are

hard to implement without resorting to awkward modifications of the database. For exam-

pie, suppose a logic program were written to identify modules that could be removed from

a circuit without affecting the circuit's behavior. Once a redundant module were located,

it would neeci to be identified so the remaining modules in the circuit could be reconnected

without the redundant module. If the modules are extensionally defined, there is no % ay

to identify a single module except through the connect pr-dicates. The extra operations

necessary to manipulate the structural description in order to compensate for the removed

module would be awkward. The simulation of faults would also be awkward if the circuit

under test were described extensionally. Often the modeling of a single-gate failure is de-

sired. If there is no syntactic way to describe exactly which individual gate's failure is to be

modeled, the simulation can not be carried c t. However, despite the inadequacies of the

extensional method, it has proven useful in applications related to logic circuit modeling

(9, 10, 141.

The expression of modularity is very difficult with either the functional or the exten-

sional methods. In contrast, a method of modeling that employs single terms to describ'.

both a module and its connections can be used to express modularity much more easily.

The third method, the definitional method, circumvents the disadvantages of the pre iouo

two methods by combining the advantages of both.

The Definitional Method. The definitional method [39:631, used throughout this

thesis, represents modules having n ports as n-ary predicates. A Horn-clause is ued tv

describe a module: the head of the clause names the module to be defined and the bod

names a combination of lower-level and primitive modules. Individual modules within .,

higher-level module are listed as subgoals of that module; the structure and internal tr

guments of each subgoal are "hidden" from the higher-level description. This "hiding"

of lower-level module descriptions allows the definitional method to be used to describ"
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Figure 3.3. Circuit diagram of a half-adder.

circuit organization in a hierarchical fashion without involving extra predicates or argu-

ments. Ports that share a common connection are represented with like-name (coreferred)

variables. A hialf-adder, for example, can be represented hierarchically as shown in Fig-

ure 3.3. Note that the XOR function can be represented by the NAND-gate configuration

of Figure 3.1.

The definitional method of representing a half-adder easily accommodates the hierarchical

P',"re of the circuit and allows connections to be described in a very undlerstandable

ir ,Lv. as illustrated by Figure 3.3 and shown by the following code (13:49',]:

half_a66er(X,Y,S,C) :

xor-ga e (X ,Y ,S),

an~d..gate(X ,Y,C).

The predicate xor-gate can be -- deled as a higher-level module in terms of primitive

NAND-gates (see Figure 3.1) with the following code:

xor-gate(X,Y,Z) :

nand_gat e(X, Y, T1),

nand_gat e(TI, X, T2),

nand_gate (Y ,T1 ,T3),

nand_gate (T2,T3 ,Z).

T"he status of a module (higher-level or primitive) can be stated with a simple primitive

predicate and one argument as follows:

primitive (nand).

primitive(and).
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All modules not specified as primitive are assumed to be higher-level.

The definitional method does not explicitly declare the input or output status of

a module as did the two methods discussed previously. If it is necessary to know the

direction of the ports, another simple predicate can be used. The predicate direction can

be written explicitly for NAND-modules as

n am¢ OUtpUts

direction(nand(A, B, C), [A, B), [C] ).
inputs

A variation of the definitional method incorporates the direction of the ports directly into

the module predicate [31:285]. For example, the predicate half add can also be written as

half-adder(in(X,Y) ,out(S,C))

xor.gate(in(X,Y) ,out(S)),

and.gate(in(X,Y),out(C)).

The definitional method of modeling has several advantages. Most important is

the fact that the module name is explicitly part of the specification, permitting easy

decomposition. Consider the half-adder of Figure 3.3. Internal connections that are named

with variables do not appear in the head of the clause and are effectively hidden as are

connections of lower levels in the hierarchy. This allows simple, primitive modules to

be easily arranged into more complex circuits without a corresponding increase in the

difficulty in comprehending the overall circuit's function. The Prolog code used to represent

the ligher-level modules is also easy to compose and understand. This method also hab

several other advantages [14:64J:

1. Prolog can execute circuit simulations directly from module descriptions.

2. An uninstantiated variable is a natural representation of a high-impedance state.

3. Circuits can be manipulated automatically by recursively decomposing their hierar-
chical structure.

The definitional method has been used %%ith considerable success to model and simu-

late digital circuits [23, 24, 36]. Complex combinational and bequential circuits hate been

explored and favorable results reported.
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[V. Logic Programming for Circuit-Extraction

4.1 Introduction
A logic circuit designer would normally work with high-level constructs such as reg-

isters and buses. seldom descending to the level of gates [7:51. However, gate-level descrip-

tions do play an important role in design, especially during the layout process. Designing

an actual integrated circuit requires a netlist. A netlist specifies the type of primitive

components (transistors or gates) necessary to realize the desired function, along with their

interconnections. A typical netlist is made up of transistors. However, for this discussion.

NAND-gates will be considered primitive for simplicity.

While a netlist is suitable for describing circuit structure for the manufacturing pro-

cess, it is a formless mass of primitive components which can be almost unintelligible to

the designer. Circuit-extraction can be used to redefine a circuit's netlist by rearranging

a circuit's modular structure into something more easily understood. Extraction removes

groups of lower-level components from a netlist and replaces them with a corresponding

higher-level component. Extraction can help the designer to understand his own design or

reverse-engineer (decipher something already designed) someone else's design by recogniz-

ing groupings of lower-level components that constitute a higher-level component.

Prolog is an ideal language to use for the extraction process because extraction is

based on the recognition of patterns and Prolog is a pattern-matching language. Only

two items are necessary for the interpreter to carry out the extraction process. First. the

interpreter needs a netlist of the primitive components that describe the circuit. Second.

it needs a description of the pattern or function to be searched for.

In the following example, the interpreter will begin with a netlist composed entirel%

of NAND-gates. First, any groupings of NAND-gates that perform XOR-gate finctions

will be found. The appropriate NAND-gates and their connections will be replaced with

the higher-level XOR-gate construct with the correct connections. The interpreter %ill

then look for groupings of NAND-gates and XOR-gates that can be replaced with full-

adders. again removing the appropriate NAND and .OR-gates with their connections and

replacing them with full-adders and the proper connections.

4.2 The Circuit-Extraction Process

Defining XOR-gates in Terms of NAND-gates. Consider the simple netlisL

(given below) consisting of four two-input NAND-gates described using the definitional
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Figure 4.1. Extracting an XOR-gate.

method. Note that the arguments of each fact have been instantiated with a constant

representing a nodal position or connection in the circuit.

nand-gate(x,y,tl).

nandgate(x,t1,t2).

nandgate(y,tl ,t3).

nandgate(t2,t3,z).

Once loaded into Prolog's database. the netlist can be scanned and the four NAND-gates

recognized as performing the same function logically as a two-input XOR-gate described

by

xor.gate(x,y,z).

Figure 4.1 shows the circuit, before and after extraction.

When the netlist is loaded into Prolog's database, it becomes part of the working

program, as data and procedures are not stored separately. Prolog has two built-;n proce-

dures that can be used to alter the (latabase b, retracting old unwanted facts or rules and

asserting new ones.

The built-in predicate retract(X) erases a fact or rule from the current database

[16:106]. The predicate retract takes a, single argument X that is to match the clause

to be retracted. The interpreter proceeds. top 'o bottom. searching through the database

until a match is made. Once the match is made. the matching clause is removed from

the database. Only one matching clause i., remnoved each time retract is invoked. If it

is necessary to remove six clauses (all %ith the same name), retract would have to be

invoked six times.

The built in predicate assert (X) adds a new clause to the database [16:105J. assert

comes with options that allow the clause to be put at the beginning of the database



Y Extraction

S z

Figyure -4.2. NAND and XOR-ga te to full-adder conversion.

(ass erta(X)) or at the end of the database (assertz(X)). The argument X must be an

instantiated clause for assert to succeed.

Defining a Full-Adder in Terms of XOR and NiAND-ates. A full-adder is

a device that has three input-terminals, each carrying asingle binary bit. Functionally, a

full-adder counts the number of its inputs that have a value of 1. The suim of the input~s is

represented with two output- terminals as a, two-digit binary number. the carry-bit C and

the sum-bit S. If two of cte three inputs have a value of I then thle output would be the

number CS =10, which is the binary representation of the decimal value 2.

A full-adder can be defined in terms of NAN D and XOR-gates (see figure 4.2). Con-

sider the following netlist. in which eacti argument has again been instantiated to a, constant

that represents a circuit-node or connection point.

xor..gate(x,y,ti) -

nand..gae(x,y,t2) -

xor-gate(z,ti ,s).

nand~gate(z,ti ,t3) -

naindgate(t2,t:3,c) -

Once loaded into prologs database. this netlist, can he subjected to the extractio~n

process and the five gates recognized asostuinafllderecibdy

fu11adder(X,Y.,s,c) -

Figure 4.2 shows the circui'. before and after extraction. After the Proo.7 interpretr

recognizes tle pattern for a full-adder in the netlist. the five gates are retracted from the~

netlist and the replacement device asserted to fill the void.

.4.3 The Circuit-Exlraction Algorithm

The process to extract full-adders can be formally stated as
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1. Load the netlist to be scanned into the database.

2. Scan the netlist for all possible XOR-gate instances of NAND-gate configurations.
When one is identified, retract the NAND-gate constituents and assert the replace-
ment XOR-gate.

3. Scan the revised netlist for all possible full-adders. Retract the appropriate configu-
rations of XOR and NAND-gates and replace them with full-adders.

NAND-gate configurations that can be replaced by XOR-gates can be found for

particular instances with the following code.

xorgate(X,Y,Z)

nandgate(X,Y,T1),

nandgate(X ,T1 ,T2),

nandgate(Y,T1,T3),

nandgae(T2,T3,Z).

When com- d against a netlist, Prolog will instantiated the upper-case letters, which

represent variables, with the netlist's lower-case letters which represent actual nodal con-

nections. The xor-gate clause above can be reused as often as is necessary to completely

scan the netlist and can be considered a generic template that describes the general con-

nectivity of an XOR-gate to the interpreter. If the interpreter can find nodal connections

within the circuit definition that fit the pattern of the XOR-gate template, the substitution

will take place. If the interpreter matches the variables in three of the four NAND-gate

goals but fails to find a match for the fourth, it will "undo" the first three goal's instan-

tiations and proceed with another combination until all possible permutations are tried.

This is done automatically because of Prolog's backtracking ability. In an actual extrac-

tion program the goals of the xor-gate clause must be modified slightly to account for a

transposing of the input values. Each goal of the clause should succeed without regard

to the order of the input value arguments. For example, the goal nandgate(X,Y,T1)

should be accompanied by the goal nandgate(Y,X,T1); thus informing the interpreter

that either arrangement of input arguments is acceptable. The remaining three goals of

the xor-gate clause require similar companion-goals in ordei to completely describe all

the possible permutations of input arguments that could occur.

In a similar manner, the complete code for defining a full-adder is
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full-adder(X,Y,Z,S,C)

(nand-gate(X,Y,T2)

nand-gate(Y.X,T2)),

(xor-gate(X,Y,T1)

xor-gate(Y,X,T1)),

(nand-gate(Z,T1 ,T3)

nand-gate(T1,Z,T3)),

(xor-gate(Z ,TI ,S)

xor-gate(Ti ,Z,S)),

(nand-gate(T2 ,T3 ,C)

nand-gate(T3,T2,C)).

where the symbol ; denotes a disjunction.

4.4 tin Abbreviated Extraction Session

In addition to the code discussed previously in this chapter, a netlist of components

and a procedure to drive the extraction process are needed to successfully start a sample

extraction session. The code necessary to drive the process is

extractfulladders -

findxor-gates,

find-full.adders.

The procedures find.xor-gates and find-full.adders describe the pattern of NAND-

gates that constitute an XOR-gate or a full-adder respectively. A complete listing of the

code is given in Appendix A.

Any netlist can now be subjected to the extraction process. The following netlist is

provided for this example:
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nand.gate(x,y,t 1).
nand~gate(y,tl ,t3).
nand-gate(x,tl ,t2).
nand~gate(t2,t3,t4).
nand-gate(t4,z,tl).

nand~gate(t4,tl,t2).
nand.gate(z,tI,t;3).
nand~gate(t2,t3,s).
nand..gate(x,y,t6).
nand..gate(z,t4,tS5).
nan&.gate(t6,tS,c).

which describes exactly one full-adder.

Running the extraction produced the following short script session. A more in depth

session is given in Appendix A. Comments and notes that are not a part of the actual

script session are set off wvith the standard Prologi comment delimiter /*.. .

Script V1.0 session started Mon Sep 02 12:44:22 1991

Microsoft(R) MS-DOS(R) Version 4.01
(C)Copyright Microsoft Corp 1981-1988

J:\THESIS\CODE>prolog

-----------------------------------------------------

IMS-DOS Prolog-1 Version 2.2
ICopyright 1983 Serial number: 0001213
IExpert Systems Ltd.
IOxford U.K.

-----------------------------------------------------

1* The following command loads the file extract.pro. The file contains all the Prolog
code necessary for this session. *

?-[extract].

extract consulted.

/* invoking the algorithm. *
?-extract-full-adders.

yes

1* The built-in predicate "listing(X)" will find all expressions for X and print them oil the
screen. *



?- listing(nandgate).
yes

/* All NAND-gates are gone. */

?- listing(xorgate).
yes

/* All XOR-gates are gone. */

?- listing(fulladder).

full-adder(x,y,z,s,c)
yes

/* One full-adder, with the proper nodal connections, was found. */

?- halt.

/* Finished .

J: \THESIS\CODE>exit
Siript completed Mon Sep 02 12:46:22 1991

There are several ways that the procedure could be made more efficient, but this

would adversely affect the readability of the code. Efficiency has been sacrificed for ease of

understanding. For example, one helper procedure could be called to find the XOR-gate

configurations and another helper procedure called to retract the NAND-gates and assert

the XOR-gate. However, since variables are only known within the scope of the applicable

procedure. additional parameters would have to be set up and passed.
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V. The Simulation of Digital Circuits with Logic Programming

5.1 Introduction

A digital logic circuit can be viewed as a network of modules, both higher-level

and primitive, whose interconnections impose constraints on the circuit. Satisfying those

constraints with some connections bound to constant values can serve to simulate the op-

eration of the circuit [31:283]. Conventional modeling programs like Spice are restricted

to quantitative modeling in the "forward" direction only [31:2841. Circuit modeling with

Prolog does not suffer from the same limitations, because of the bidirectional nature of

logic programming [23]. By specifying a subset of the inputs to a circuit under test, Prolog

can provide all possible corresponding output values. If a subset of the output values is

specified, Prolog can provide all input values that are possible under those circumstances.

If a combination of input and output values is specified, Prolog will find all possible com-

binations of unspecified input and/or output values.

Unlike the extraction process of the previous chapter, the simulation of digital cir-

cuitry does not involve the manipulation of nodal connections. Instead, the variables in

the circuit definitions are instantiated with Boolean values, either 0 or 1. The convention

for naming functors to reflect this difference is discussed in Chapter 1.

5.2 The Simulation of Combinational Circuits

5.2.1 Primitive Modules. The simulation of the operation of combinational circuits

composed of primitive modules is easily accomplished with Prolog. In a combinational cir-

cuit, the value of the output depends only on the present value of the input. As an example.

consider a circuit that contains one two-input NAND-gate. At any time, each of the input

signals mav be at one of two voltage levels; these are represented by the Boolean values 0

and 1. The output of the NAND-gate is at level 0 if and only if all its inputs are at level

I; otherwise the output is at level 1. This behavior is defined by the truth-table shown fit

Table 5.1 where X and Y represent input signals and Z represents the output signal. Tle

operation of a two-input NAND-gate can be described in Prolog with four facts, one for

each row of the Truth-table (Table .5. 1).
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fact 1 nand(O,O,1).

fact 2 nand(0,1,1).

fact 3 nand(1,O,i).

fact 4 nand(1,1,0).

Once the four facts describing the operation of a NAND-gate are supplied to the

Prolog interpreter, the gate's operation can be simulated forward with the following query:

?- nand(O,O,Out).

Out = I

more (y/n)? y

no

The query, directly above, asks "if the two input signals of a two-input NAND-gate are

set to the Boolean value 0, what possible values can the output variable Out hold ?".

The NAND-gate truth-table shows that only one value exists for the given combination of

.inputs, Out = 1. Simulation in the backward direction is also possible. The query

?- nand(X,1,Out).

will yeild the following response from the interpreter.

X=0

Out = 1

more (y/n)? y

x-1

Out = 0

more (y/n)? y

no

Table 5.1. NAND-gate truth-table.

X Y lOut

1 0
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Table 5.2. XOR-gate truth-table.

X Y out000

01 1
~I I

5.2.2 Higher-Level Modules. In order to simulate the operation of a higher-level

module, it must be defined in terms of lower-level modules. At the bottom of the module

hierarchy are the primitive submodules. Consider an XOR-gate. The output of In XOR-

gate produces the modulo-2 sum of all its inputs [7:2]. Since the range of the input values

is limited to either the Boolean value 0 or 1, the operation of an XOR-gate may be thought

of as counting the number, N, of the XOR-gate*s 1-inputs. If N is odd, the output signal

level is 1; if N is even, the output is 0. Table 5.2 defines this behavior for a two-input

XOR-gate.

In order to simulate the operation of an XOR-gate, two approaches are possible.

First, the gate could be declared as a primitive gate and the values in Table 5.2 listed as

facts in the database, similar to the procedure described for the NAND-gate or second,

the XOR-gate function could be modeled hierarchically in terms of other modules. Taking

the latter approach, one of many possible ways to construct a digital circuit that behaves

as an XOR-gate is shown in Figure 3.1. This hierarchical representation can be simulated

if the constituent NAND-gates are declared primitive and the NAND-gate truth-table (see

Table 5.1) entered into the database. All that woull be needed to initiate a query would

be the rule that defines the XOR-gate hierarchically in terms of NAND-gates. The rule.

coded in Prolog, would be

xor(X,YZ)

nand(X,Y,T1),

nand(X,T1,T2),

nand(Y,T1,T3),

nand(T2,T3,Z).

When the simulator is presented with the query

?- xor(1,1,Z).

the following actions take place:
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1. The first goal of the XOR rule, nand(X,Y,TI) has both X and Y instantiated to the

value of "1" because of the format of the query. Nand-fact 4 (see page 5-2) can satisfy

the first goal if T1 is instantiated to tile value of "0". With this done, the second

goal now reads nand(i,0,T2).

2. Nand-fact 3 can satisfy the second goal if T2 is instantiated to the value of "I". With

this done, the second goal is now satisfied and the interpreter attempts to satisfy the

third goal, nand(1,0,T3).

3. The third goal can be satisfied through the application of nand-fact 3 also. This

instantiated T3 to the value of "1". The interpreter now moves on to the fourth goal,

nand(1,1,Z).

4. Nand-fact 4 can be used to satisfy the fourth goal of the XOR rule resulting in Z being

instantiated to 0. The interpreter has now found one possible solution and correctly

reports Z = "0" as the result. In this example, no more solutions are possible as no

more nand-facts can be used to satisfy the XOR rule's goals.

Applying this approach, Prolog allows the operation of very complex hierarchically-

designed circuits to be simulated with ease. For circuits having large numbers of input lines.

the simulation of all modes of operation is not practical; if done with discretion, ho' e er.

simulation does provide the designer with a reasonable degree of confidence in his design

[7:4]. The following bidirectional simulation of a four-bit adder serves to illustrate the

usefulness of the simulation of complex digital circuitry with Prolog.

5.2.2.1 Defining a Full-Adder in Terms of XOR-Gates and NAND-Gates. A

full-adder is a device that has three input-terminals and two output-terminals. The range

of the input and output values is limited to the Boolean values of 0 or 1 just as was

done in the previous examples. The outputs are labeled (by convention) C (carry) and S

(sum). The ope-ation of a full-adder is similar to that of an XOR-gate in that it counts the

number, N, of its inputs that have the value 1. The value of N is displayed at the output

of the full-adder as a two-bit binary number. For example, if all three inputs hate the

value 1, then the output would be CS = 11, or binary 3. A full-adder was defined in term s

of XOR- and NAND-gates in the previous chapter. The schemi.tic representation of a

full-adder is shown in Figure 41.2. Each XOR-gate in the full-adder can be modeled by fuur

NAND-gates; hence a flattened representation of a full-adder could contain as many as 1

two-input NAND-gates. The conventional symbol for a full-adder is shown in Figure 5.l.
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Figure 5.1. Conventional representation of a full-adder.



X3 Y3 X2 Y2 X1 Yl XO YO

C3 FA FA FA FA 0

S3 S2 SI so

Figure 5.2. Four-bit binary adder constructed from full-adders.

5.2.2.2 'efining an n-Bit Binary-Adder in Terms of Full-Adders. An n-bit

binary adder works in a fashion similar to that of the full-adder. The n-bit binary adder

produces a binary sum represented by n+1 output bits given two n-bit binary numbers as

inputs. Figure 5.2 shows a four-bit binary-adder.

Consider the following netlist

full_adder(XOY0,0,CO,SO).

full.adde(XI,Y,CO,C,S1).

fulladder(X2,Y2,C1,C2,S2).

full_adder(X3,Y3,C2,C3,S3).

that models the circuit shown in Figure 5.2. Note that the value of the signal on the itput

carry line has been set to 0 for convenience. The netlist's operation can be simulated by

defining its head functor and arguments as

four-biadde(bin(X3,X2,X,XO) ,bin(Y3,Y2,Yg,YO) ,bin(C3,S3,S2,S1 ,SO)).

Note that there is no actual procedure named bin. The functor bin is used for pattern-

matching and allows the arguments of the adder to be grouped into a more recognizable

form. Also note that the functor, bin, does not have the same number of arguments in all

cases. Prolog will recognize this and treat the functors with different numbers of arguments

as different functors. The complete Prolog code that describes the operation of a four-bit

adder is

.5-6



four-bit-adder(bin(X3,X2,X,XO),bin(Y3,Y2,Y,YO),bin(C3,S3,S2,S1,SO))

full.adder(XO,YO,O,CO,SO),

fulladder (X 1,Y1,CO ,CI,S), 

fulladder(X2,Y2,C1,C2,S2),

fulladder(X3,Y3,C2,C3,S3).

It is interesting to note that a flattened four-bit binary adder would require 44 NAND-

gates. Construction and simulation of a 44 gate circuit is considerably more difficult if

advantage of the hierarchical structure is not taken.

5.2.3 An Example of a Four-Bit Binary Adder Simulation. The simulation of the

operation of a four-bit binary adder, modeled hierarchically with NAND-gates, can be

accomplished with the code discussed above. The required code is repeated in a consoli-

dated form in file addrcode.pro located in Appendix B. Comments, that are added to the

simulation session for clarification, are set of with the standard Prolog-1 comment syntax

Script V1.O session started Mon Sep 09 09:24:35 1991

Microsoft(R) MS-DOS(R) Version 4.01
(C)Copyright Microsoft Corp 1981-1988

J: \>prolog
-----------------------------------------------------

I MS-DOS Prolog-1 Version 2.2 I

I Copyright 1983 Serial number: 0001213 I

I Expert Systems Ltd.
l Oxford U.K. I
-----------------------------------------------------

/* This command loads the file which contains the code necessary for the simulation to

take place. */

?- [addrcode].

addrcode consulted.

/*Test with all inputs set equal to zero.



?bin-adder(bin(0,0,0,0),bin(0,0,0,0),bin(C3,S3,S2,S1,S0)).

C3 =0

S3 =0

S2 =0

Si = 0
SO = 0
More (y/n)? y

no

/*Rves simulation test. Given that all X inputs are set to zero and the output is given

as binary 1, what must value at Y have been ? ~

?- bin-adder(bin(0,0,0,0),Y,bin(0,0,0,0,1)).

Y =bin(0,0,0,1) /*correct value*/

More (yin)? y

no

/*WithI the output set at 1, find all possible input combinations. *

?- bin-adder(X,Y,bin(0,0,0,0,1)).

X = bin(0,0,0,0) /*one of two*/
Y = bin(0,0,0,1)

More (yin)? y
X = bin(0,0,0,1) /*two of two*/

Y = bin(0,0,0,0)

More (yin)? y

no

?- halt.

J:\>exit

Script completed Mon Sep 09 09:31:51 1991

More detailed simulation results for a four-bit binary add~er along with a complete listing

of the associated Prolog code are included in Appendix B.

5.3 The Simulation of Sequential Circuits

Sequential circuits are more difficult to simulate than combinational circuits because

any output depends on both the present and past input values (41.919]. A sequential

network effectively has a "memory" because it must remember something about the past



sequence of inputs. A combinational circuit has no such memory. A sequential network

is composed of a combinational network and some added memory elements. The memory

function in sequential networks is performed by memory devices, some of which are flip-

flops, counters, and shift-registers. Since flip-flops are the most basic memory device, this

discussion will focus on simulating sequential circuits, all of whose memory elements are

flip-flops.

One of the most widely used members of the flip-flop family is the JK flip-flop. A

JK flip-flop can be represented with the with the relation

jkff(J,K,Ps,Ns).

where J and K are input terminals, Ps is tile present state and Ns the next state. To create

a program that simulates the operation of a JK flip-flop, the complete operation of the flip-

flop must be specified and the appropriate code added to the database. The following code,

derived from Table 5.3, specifies the operation of the JK flip-flop. Since all JK flip-flops

are clocked on either the leading or trailing edge of the clocking pulse, actual JK flip-flops

must be supplied with an adequate clocking pulse in order to operate properly. However,

the simulation of flip-flop operation is possible without specifying any input clock pulse

because each clock cycle is represented as one recursive call to the simulation procedure.

During any one cycle, all next-state values Ns are found from the combination of present-

state values. J, K, and Ps. Realizing that a clock pulse is superfluous allows the .1K

flip-flop to be modeled without specifying a clocking sequence. The code that describes

the complete operation of a JK flip-flop is

jkff(0,0,0,0).

jkff(O,O,1,1)-

jkff(O,1,0,0).

jkff(O,1,1,0).

jkff(1,0,O,1)-

jkff(1,O,1,)

jkff(1,1,O,1).

jkff(l,1, 1,0)

Since the operation of a flip-flop requires the specification of an input sequence of

J, K, and Ns values, recursion is used to simulate sequential operation. Simple recursive

routines are necessary in order to "feed" the input values to the device in a serial fashion.

A verbal description of the algorithm necessary to simulate JK flip-flop operation would
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Table .5.3. State transition table for a JK flip-flop.
Ji K Ps N s

0 0 1 1

0 1 0 0
o 1 1 0

1 0 0 1
1 01 1

be:

1. Using, the Heads of the J and K input lists. and the present state Ps. find the value

of the next state Us.

2. Continue the simulation with the tails of the J and K lists. Use the value of the

next state Ns found in the previous stepacs the value of the present state Ps for each

iteration.

3. When the lists of inputs are exhausted. return a list of all the next state. its. values.

The Prolog code that accomplishes this be-ins with the boundary condition speciffied

as

jksimC50 ,E 0..10)

foliowed by the recursive procedure

jksirn([JIJr],[KIKrlPs,OIlsIUr))

jkffCJ,K,Ps,Ns),

jksim(Jr,KrNs,Nr).

.5.3.1 A1 Flip-Flop Simulation Session. The Prolog code listed immediately abowP

and the code that describes the JI{ flip. flop's operational characteristics can be combined to

simulate the operation of a single device. A fully commented listing of thie code required to

perform this simulation is given in Appendix 13 tinder the file name jkcode-pro. Appendix

B also contains a detailed simulation session in verbose form. A smaller and less verbose

extract of the simulation is presented here.
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Script V1.0 session started Tue Sep 10 11:40:29 1991

Microsoft(R) MS-DOS(R) Version 4.01
(C)Copyright Microsoft Corp 1981-1988

A: \THESIS\CODiE>prolog
-----------------------------------------------------

IMS-DOS Prolog-1 Version 2.2
ICopyright 1983 Serial number: 0001213
IExpert Systems Ltd.
IOxford U.K.

-----------------------------------------------------

/ A This command loads the file which contains the code necessary for this simulation. ~

-[jkcode].

jkcode consulted.

/* Starting with a simple test case.

?-jksim( [0] , [01 ,0,Q).
Q = 10]

More (yin)? y
no

/* Testing a median case. /

?- jksiia([1 , [0] ,0,Q).

More (y/n)? y

no

fA' Testing an end condition. /

?- jksim([1J,[1],1,Q).
S= 0

More (y/n)? y

no

1* Testing an input sequence. ~

?- jksim([1,0,1,1,1 , [0,1,1,1,0] ,0,Q).
Q [10101
more (y/n)? y



no

?- halt.

A: \THESIS\CODE>exit

Script completed Tue Sep 10 11:45:50 1991

Circuits that contain any number of combinational devices and more than one flip-flop

can be very difficult to accurately simulate. The difficulty lies in the additional constraints

placed on the timing aspect of the circuit If the proper signal is not at the input terminals

of a flip-flop at the correct time, the device could enter an incorrect state, resulting in an

erroneous output. These timing conflicts are commonly referred to as race conditions. Race

conditions are avoided by using edge triggering devices or master-slave configurations in

actual circuit implementations. In an actual circuit, all devices are triggered concurrently.

The simulation of this concurrent triggering action cannot be accomplished with Prolog

because of the sequential nature in which the interpreter executes the goals of a procedure.

Simulation-Races. Precautions must be taken to avoid simulation-races when

simulating the operation of complex sequential circuits with Prolog. The circuit shown in

Figure 5.3 might be improperly modeled with the following code:

jkcrt ([ [,f[]....,[] ).

jkcrt([XIXr],[YIYr],Ps-1,Ps_2,[Ns_2IRest])

jkff(X,Y,Ps_1,Ns_1),

jkff(Ns_ 1,Y,Ps_2,Ns_2).

with the operation of the JK flip-flop specified by the same set of facts used in previous
examples. Ps-. and Ps_2 specify the present state of the respective flip-flop. If the database

is queried with

?- jkcrt([1l],[0,OO,Q).,

the interpreter will respond with

Q = [I]

more (YIN) y

no

Inspection of Figure 5.3 shows that the correct output for the given query is Q = [o. The

error is due to the simulation-race tha'-t exists between the two devices of the circuit. Since
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Figure 5.3. Sequential circuit.

the operation of the flip-flops is simulated sequentially, each device is effectively clocked

sequentially instead of in parallel as would be done in an actual circuit. The simulation

effectively "clocked" the first flip-flop, FF_1, and produced the resulting next state Ns-1.

The new value for Nsi was passed on to the second flip-flop FF.2, altering the value on

its input J terminal before the simulation had a chance to "clock" the old value on the J

terminal through.

Simulation-races can be avoided by "decoupling" the output terminals of the flip-

flops from any devices that utilize flip-flop outputs. The simulation is allowed to proceed

with present state values and the next state values are passed recursively on to become the

next simulation's present state values. Rewriting the code given above for the predicate

jkcrt to reflect this change gives

jkcrt([XXr],[YlYr],Ps_ ,Ps.2,[Ns_2lRest]

jkff(X,Y,Ps_1,Ns-1),

jkff(PsJ,Y,Ps_2,Ns_2).

that shows the altered relationship between input and output values necessary to prevent

a simulation-race from developing.

5.4 TTLS - A TTL Digital Circuit Simulator

The previously discussed methods of simulating the operation of combinational and

sequential digital circuits can now be consolidated to form a general purpose simulator.

Since most engineers have some experience with standard transistor-transistor logic (TTL)
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design, a simple-to-use TTL circuit simulator can be a very useful design tool. With this

in mind. the Transistor-Transistor Digital Logic Circuit Simulator (TTLS) was designed.

TTLS is a pin-level logic circuit simulator that can be used to test the performance of

digital circuits constructed from a restricted set of 7400-series TTL integrated circuits.

The operation of any TTL circuit can be simulated with TTLS as long as the circuit's

constituent integrated circuits are listed in the TTLS database file (ttldata.pro).

5..;.1 Key Features of TTLS. TTLS employs several features that separate it from

other reported digital circuit simulators [31, 36, 411.

Stack Instantiation. TTLS uses "stack-instantiation" to unify variables. Struc-

tures with partially instantiated arguments are arranged on a Prolog goal stack in a man-

ner that invokes a circuit-rule defining the desired circuit operation. When the circuit-rule

"fires," all uninstantiated variables on the stack are unified. The instantiated structures

are removed from the stack and reported to the user as the simulation results. Stack-

instantiation allows circuit simulation to proceed at a very quick pace.

Memory Devices. TTLS can be used to simulate the operation of circuits that use

memory devices such as flip-flops. All memory devices are automatically cleared before a

simulation sequence is started. Present state and next state values are carried recursively.

through the simulation, as arguments. These arguments, as well as other functions neces-

sary to simulate a digital circuit's operation, are managed internally by TTLS and are not

visible to the user.

Built-in User Interface. TTLS has a built-in user interface that guides the user

through the simulation process. The interface prompts the user for any additional data

required for the simulation to take place. After the initial simulation is completed, TTLS

prompts the user either to continue the simulation with a new input sequence or to quit.

Built-in Self-Tests. TTLS is written in Prolog-1 and is designed to make use of

Prolog's pattern-matching capabilities. Several key points in the execution of the simula-

tion are tied directly to Prolog's ability to detect an error if patterns should match but do

not. For example, if the user attempts to run a simulation with a circuit requiring three

input values per clock cycle but he/she only specified two values, the Prolog interpreter

cannot unify the erroneous input pattern and an error message informs the user of the

problem and allows him/her to correct the mistake.

The Prolog interpreter also knows that each integrated circuit output pin being used

must be connected to input pins. The TTL data file specifies exactly how many input pins
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should correlate to an output pin for a particular package. Although the interpreter never

explicitly counts the exact number of input pins defined in the wire-list for each output

pin, it can detect an input pin inadvertently left unconnected (floating). If the interpreter

does detect a floating input pin, an error message is generated.

The TTLS Process. TTLS derives a gate-level circuit definition from the user

provided input data file and asserts the definition into the database as a fully executable

Prolog circuit-rule. The circuit-rule is derived in an uninstantiated form and as such is

fully reuseable. The predicate head of the circuit-rule is structured in such a way that

new simulation sessions are initiated by reconfiguring a copy of the predicate head (called

a test-head) for each simulation clock cycle, this avoiding the computational overhead

associated with redefining the circuit-rule for each cycle. The structure of the test-head

allows related data, such as input and output values, to be manipulated as related objects

rather than individual elements. The head is configured with lists as arguments and has

the form

circuit (ListOf InputValues,ListOf OutputValues,ListOfMemoryDeviceArgs).

With the functor "circuit". The first list, ListOf InputValues, represents the input values

for a particular clock cycle. At the start of a simulation cycle, the old list of input values

(if there is one) is removed from the head and the new list of input values is inserted. The

list of output values, ListOf OutputValues, enters into the simulation as uninstantiated

arguments and after exposure to the goal stack, becomes fully instantiated. When fully in-

stantiated, ListOfOutputValues contains one clock cycle's simulation results. The list of

memory device arguments, ListOfMemoryDeviceArgs. is invisible to the user. TTLS auto-

matically sets this list up and manages it through the simulation process in order to prop-

agate memory device state values from one cycle to another. ListfMemoryDeviceArgs

is empty if there are not any memory devices in the circuit. Manipulating lists instead of

individual elements contributes to TTLS's low execution time.

5.4.2 The Circuit-File. In order to iinitiate a simulation session, the user must

provide an input data file, referred to as the circuit-file, containing the following:

1. a wire-list,

2. a list of integrated circuits,

3. zL sequence of input values.
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The circuit-file can be named as the user pleases but must end with a ".pro" extension.

Any editor capable of creating a file in ascii format can be used to create the circuit-file.

Each of the three constituent parts of a circuit-file is further described below.

The Wire-List. The wire-list describes all of the test circuit's inter- and intra-

connections, including input and output connections. The wire-list must be specified using

the following format:

wire-list

[InputA,dicnum,dicpin_num],

[WireNum,sicnum,sic-pin-num,dinum,dicpinnum],

[OutputNum,sic.num,sicpin-num].

where WireNun is the wire name expressed as a Prolog variable. This may be any name the

user desires and may be connected to as many destination integrated circuits as desired.

As a note of caution, TTLS will allow any integrated circuit's output pin to be connected

to an unlimited number of input pins; therefore, it is incumbent on the circuit designer tu

avoid fan-out problems when actually implementing a circuit simulated with TTLS.

The source integrated circuit number, sic-num, is a user-defined number for the par-

ticular integrated circuit (icl,ic2,...icN). The number sic-pinhum is the source integrated

circuit pin number and is the actual pin number of the source integrated circuit (sic-num)

to which the wire, WireNum, is connected. The other end of WireNum is connected to the

destination integrated circuit. dic-num. at the destination integrated circuit pin nunibei

dic-pin-num (see Figure 5.4).

Input and output connections are specified in the format of the first and last wire-list

entry in the example above. Input and output connections need only a wire-name, ex

pressed as a Prolog variable, and a destination integrated circuit and pin number. There

is no limit to the number of input or output signals that can be specified. However, input

and output signal-wires must be declared in a fashion that directly correlates the specified

input or output value sequence to the order of their listing in the wire-list. For example.
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WireNum

ici sic-pin-num c

dic-pin-num

sic numdcnu

Figure 5.A. Integrated circuit connections.



clock cycle I

inputsequence([[0, 1,0],...]).

Input A

Input B

Input C

Figure 5.5. Example of an input-sequence.

if the circuit to be simulated has three inputs A, B, and C, the wire-list would have as

its first input entry, a wire-name of the user's choice and the integrated circuit and pin

number to which input A is to be connected. As many input A entries as desired could

follow as long as the next distinctly different input entry is for input B and the associated

integrated circuit to which input B is to be connected. Input B should then be followed

by input C and so on. Once inputs A, B, and C have been declared, additional A, B. or C

input entries can come in any order. The same sequential listing-order must be followed

for the output signals (See Figure 5.5).

If the circuit design involves a connection between ground or Vcc and alL I.put pin

(for example tying the "K" input to a JK flip-flop low), then the connection must be

specified. To tie an input pin to ground use a wire-list entry with the following format;

[0,dicnum,dicpinnum].

To tie an input pin high use

[1 ,dicnum,dicpinnum] .

Output integrated circuit pins that are to be left floating do not need to be declared

in the wire-list. TTLS will automatically ignore any floating output pins. Also, the user

should not list connections to those integrated circuit pins that are normally connected to

power, clock, ground, clear, or preset. TTLS will provide an accurate circuit simulation

without these connections being defined.
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The Integrated Circuit List. Each integrated circuit must be assigned a distinct

number (called an ic-number). For example, if the circuit contains tv'o integrated circuit

packages. both might be declared as

ic(icl, '7400').

ic(ic2, '7402').

with the ic-number being assigned at the user's discretion. If the circuit requires several

integrated circuit packages of one type, a new distinct ic-number must be assigned to

each package. For example, if the circuit requires six NAND-gates (SNT,100 has four per

package), ici would provide the first four and ic2 the remaining two. The two integrated

circuits would be defined as

ic(icl,'7400').

ic(ic2, '7400').

The Input-Sequence. An input-sequence is defined as a list of lists using Prolog

syntax. For example, to simulate a circuit with three inputs, the input list woulh look like

Figure 5.5. The Figure shows that for the first clock cycle, input A will be set to 0, input B

will be set to 1, and input C will be set to 0. The pattern of one three element list per clock

cycle can be repeated for as many clock cycles as desired. Only one input-sequence can be

defined in the circuit-file. Additional input-sequences can be entered from the keyboard

during the simulation. An input-sequence can be defined for an unlimited number of clock

cycles regardless of whether it is listed in the circuit-file or entered from the keyboard. An

example of a complete circuit-file can be found in Section 5.4.4.

5.4.3 Detailed Operational Analysis. The simulation process starts with the user

typing '[tt1]". at the Prolog prompt. The built-in interface will respond by informing

the user that several files necessary to the program's execution are being loaded. The user

is asked to specify the name of the input circuit-file, which may be one of the two tes"t

files provided or his own personal file. TTLS initiates a session by reading the chosen

circuit-file.

Initiating the simulation causes TTLS to form the gate-list. The procedure listed

in Appendix B. called build-circuit, does this by scanning the wire-list, ic-number list.

and the TTL data file, ttldata.pro. The gate-list is formed by matching output integrated

circuit connections, found either in the first two entris of a four-entry wire-list declaration

or an output declaration, with any input connections found in either the last two entries ,f
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a four-entry wire-list declaration or an input declaration. TTLS also detects any floating

integrated circuit inputs while constructing the gate-list and when found, reports the ic-

number and the pin number to the screen. The user must correct the wire-list before tie

simulation can proceed. As the final step, the gate-list is converted into Prolog executable

code and asserted into the data base. A copy of the head of the circuit-rule is also asserted

into the data base for later use as a generic template. Asserting the circuit.rule and

corresponding head into the data base saves the computational overhead associated witli

remanufacturing the circuit-rule for each individual simulation cycle. Both the circuit-rule

and the head will be reused an unlimited number of times. The circuit-rule is finally

reported to the user, providing a gate-level description of the circuit implementation.

Following the construction of the circuit-rule. the procedure set-up.state install-

tiates each flip-flop's next-state argument., to the Boolean value 0. In order to better

understand why this step is necessary, a discussion of the handling of present and next

state values for memory devices is necessary. A definition of terminology is also neces-

sary in order to avoid confusion between i simulation sequence and a simulation cycle.

The former refers to the simulation of a circuit's operation over the duration of the cur-

rently specified input-value sequence; this process may require many clock cycles. The

latter refers to the simulation of a circuit's operation for the duration of one entry in the

input-value sequence, requiring one clock cycle.

Memory device arguments are kept as a list with the form

[Q,QBar,Q+,QBar+]

where Q is the present state output and QBar is the present state's negation, (4+ is the

future state value and QBar+ its negation. Prior to the start of a normal simulation cycle,

Q is instantiated to the Boolean value 0 or I and QBar is instantiated to the complement

of Q. The variable Q+ and its complement are not instantiated until after the simulation

cycle. Once a cycle terminates, Q and QBar are no longer of interest and are discarded. Q+

and QBar+ now hold the desired value of prebeiat state for the next simulation cycle, hence

Q+ replaces Q and QBar+ replaces QBar. Q+ and QBar+ are replaced with variables that %ill

be instantiated during the next simulation cycle.

Prior to the start of a simulation sequence. the memory devices must be initialized

to a known state. TTLS clears all memory de ices before the beginning of each simulation

sequence. This is performed by the set-up-state procedure. The procedure initializes

each niemory device's argument-list by instantiating each list into the following form:
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[Q,QBar,O, 1]

The evaluate-circuit procedure will shift the Q+ and QBar+ values into the Q and QBar

positions, placing each memory device into a known starting state. Once this process is

performed for each memory device in the circuit, the simulation can proceed. If the circuit's

composition is purely combinational, the list of memory device arguments is empty and

this preparation is not performed.

Following the preparation of the memory-device argument-list, the first simulation

cycle is ready to begin. Tile procedure evaluate-circuit receives the input sequence value

list, the memory device argument list, and a clock cycle count of 0. The memory device

argument list is manipulated as discussed above by the procedure update-states. The

transfer of state values is done at this level as evaluate-circuit recursively calls itself each

simulation cycle until the simulation sequence is complete. A copy of the circuit-rule head

is also retrieved from the data base to serve as a structural template. The retrieved head is

procedurally correct with the proper functor and arity necessary to invoke the circuit-rule.

However, all arguments of the copy are uninstantiated. The list of input values for tile

simulation cycle and the list of memory device arguments must be instantiated before the

circuit-rule is invoked. This is done ir one step using the built in operator univ. Univ is a

built-in procedure that provides a useful way to obtain the arguments of a structure. The

syntactical representation for univ is ' ' =.. ". The expression X =.. L means that L is the

list whose head is the functor X, and whose tail is the list of arguments of X. If a segment

of code states

X=. . [foo,A,B,C]

then X would be instantiated to the functor foo with arguments A,B and C.

Using univ, the uninstantiated list of input values is replaced with the head of the

input-sequence list and in the same step, the list of memory device arguments is replaced

with the updated version supplied by update-states. The list that holds the uninstanti-

ated output arguments is left alone. The simulation cycle is now ready to proceed.

The fully prepared head is now sent to the procedure test-circuit as a Prolog

goal. Since the head is procedurally correct, it can be used to invoke the circuit-rule.

Through the process of stack instantiation, all of the uninstantiated variables in the output

argument list and the list of memory device arguments are fixed. Both of these lists ar.

returned to evaluate-circuit where the clock-cycle count is incremented, the list of

output values reported to the user, and the list of memory device arguments prepared for
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the next simulation .cycle. This process continues until the list of input sequence values is

exhausted.

The built-in TTLS user interface now asks the user if additional input sequence trials

are desired. If so, the memory devices are cleared and the new input sequence is applied to

the previously defined circuit-rule. If the input sequence is not provided in the proper form

(if, for example, the c- :uit requires three input sequence values to be specified and the

user erroneously provides only two), the head will not take on the correct format and the

simulator will not be able to invoke the circuit-rule. If this happens, the interface informs

the user of the problem and allows the user to either fix the error or terminate the session.

A complete listing of the simulator code is given in Appendix B.

5.4.4 TTLS Combinational Circuit Example. The following code constitutes a com-

plete circuit-file that describes a full-adder and all the code necessary to simulate its op-

eration.

wire-list [InputA,icl,pin2],
[InputB, icl ,pin3],

[InputC,icl,pin8],
[InputA,ic2,pinl],
[InputB,ic2,pin2],
[InputC, ic2,pin4],
[W1,icl,pinl,icl,pin5],
[W2,ic2,pin3,icl,pin6],

[W2,ic2,pin3,ic3,pin2],
[W3,icl,pin4,icl,pin9l,
[W3,icl,pin4,ic2,pinS],
[W4,icl,pinlO,ic1,pin12],

[W5,ic2,pin6,icl,pinl3],
[W5,ic2,pin6,ic3,pin1],
[Sum,icl,pinl4],
[Carry,ic3,pin3].

ic(icl, '7402').
ic(ic2, '7408').
ic(ic3, '7432'). A
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input-sequence([[0,0,0],[0,0,I],[0,1,0],[O,,i],(I,0,0],
[1,0, 1] , [1,1,0], [1,1, 1]]).

An ic-package level diagram of the circuit described by the wire-list is shown in Figure .5.6.

Figure 5.7 depicts the gate-level representation of the same circuit %ith the interconnecting

wires labeled with the wire-names from the wire-list. Figure 5.8 shows the same gate-level

circuit but note that the wire-names have been replaced with the Prolog assigned variable

names. Comments added to the circuit-file and the simulation session are set off with the

Prolog comment syntax /*...*/.

Script V1.O session started Thu Nov 14 23:19:15 1991
+----------------------------------------------------------

I MS-DOS Prolog-1 Version 2.2 I
I Copyright 1983 Serial number: 0001213 I
I Expert Systems Ltd. I
I Oxford U.K.

----------------------------------------------

/* starting the session.*/
?- [ttil.
Loading TTLSIM.PRO.

Loading TTLDATA.PRO.

Loading SETUP.PRO

Type 'go' at the next prompt to start the process.
Be sure to end all commands with a period.

ttl consulted.
- go.

Two demonstration files are provided with
this simulator. The first, CKTI.PRO, describes a full-adder.
The second, CKT2.PRO,describes a pattern-detector which
generates an output (1) each time the input stream has at least
two zeros followed by an odd number of ones.
If you want to simulate your own circuit file;
type the file name at the prompt. Your file
must have the form 'filename.pro' but type only
the file name at the prompt. You may return to dos
at any time by typing 'halt.' at the prolog prompt.

Which file would you like to simulate? > (cktl./ckt2./YourFile)
cktl.
Loading CKTI.PRO

/* The wire-list is repeated for the convenience of the user.*/
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The wire list is:

[-117,icl ,pin2]

[_127,icI,pin3]

[.137, ici ,pin8]

C-117,ic2,pinl

[.127, ic2,pin2]

L-137,ic2,pin4]

[_177,icl ,pinI,icl ,pin5]

[_191 ,ic2,pin3,icl ,pin6]

C.191 ,ic2,pin3,ic3,pin2]

[.219, ici 1pin,icI ,pin9]

[.219, icI ,pin4, ic2 ,pin5]

[.247, ici ,pinlO, icI ,pin12]
[_261, ic2,pin6, icI ,pin13J

[.261, ic2 ,pin6 ,ic3 ,pinl]
[_289,icl ,pinl4]

[.299, ic3 ,pin3]

1* This is the gate-level circuit description which the interpreter derives from the wire-list.
Note how much easier this list is to understand compared to the original wire-list. ~

The gate level circuit is:
nor(-117,-27,-177)
andC.117,-27,-191)

norC.177,191 ,.219)
norC.137 ,219,.247)
andC.137 ,219,.261)

nor (_.247,.261, 289)

orC.261 ,-191 ,-299)

/ * The input and output values are printed to the screen and referenced to their particular

clock cycle. ~



CLOCK CYCLE INPUT VALUES OUTPUT VALUES

1 [0,0,0] [0,0]

2 [0,0,1] [1,0]

3 [0,1,0] [1,0]

4 [0,1,1] [0,1]
5 [1,0,0] [1,0]
6 [1,0,1] [0,1]

7 [1,1,0] [0,1]

8 [111]1 [1,11

Do you want to input another simulation sequence? (yes./no.)>

no.

simulation over

Script completed Thu Nov 14 23:20:07 1991

5.4.5 TTLS Sequential Circuit Example. This example illustrates the simulation

of a sequential circuit pattern-detector thalt when provided an input sequence of Boolean

values 0 or 1, detects the occurrence of two or more 0'Is followed by an odd number of

!I s. Derivation of the pattern- detector circuit is described in Appendix B. The complete

circuit-file is

wire-.list
[InputA, ici ,pinl],
[InputA,ic2,pinl],
[InputA,ic3,pin9],
[W1,icl,pin2:ic3,pinl],
[Wi, ici ,pin2,ic2,pin4],

[',1,icl,pin2,ic4,pinl3],

[W2,ic3,pin3,ic4,pin2L,

EW3,lc4,pinlO,ic3,pin2],

[W3,ic4,pinlo,ic2,pin2],

EW3,ic4,pinlO,ic3,pin4],

EW4,ic4,pin6,ic2,pin5],

[W4, ic4,pin6,ic3,pin5],

[W6,ic2,pin6,ic4,pinl4],

[W7,ic3,pin6,ic3,pinlO],

[Output, ic3 ,pin8].
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Loading TTLSIM.PRO.

Loading TTLDATA.PRO.

Loading SETUP.PRO

Type 'go' at the next prompt to start the process.
Be sure to end all commands with a period.

ttl consulted.
?- go.
Two demonstration files are provided with
this simulator. The first, CKTI.PRO, describes a full-adder.
The second, CKT2.PRO,describes a pattern-detector which
generates an output (1) each time the input stream has at least
two zeros followed by an odd number of ones.
If you want to simulate your own circuit file;
type the file name at the prompt. Your file
must have the form 'filename.pro' but type only
the file name at the prompt. You may return to dos
at any time by typing 'halt.' at the prolog prompt.

Which file would you like to simulate? > (cktl./ckt2./YourFile)
ckt2.
Loading CKT2.PRO

/* The wire-list is printed to the screen for the user's convenience. */

The wire list is:
l117,ici,pinl]
[_117,ic2,pinl]
[_l117,ic3,pin9]
[_147,ic1,pin2,ic3,pinl]
[_147,ic1,pin2,ic2,pin4]
[_147,icl,pin2,ic4,pin13]
[_189,ic3,pin3,ic4,pin2]
[_203,ic4,pinlO,ic3,pin2]
[_203,ic4,pinlO,ic2,pin2]
[_203,ic4,pinlO,ic3,pin4]

[_245,ic4,pin6,ic2,pin5]

[_245,ic4,pin6,ic3,pinS]
[_273,ic2,pin3,ic4,pin3]
[_287,ic2,pin6,ic4,pin14)
[_301,ic3,pin6,ic3,pinlO]
[_315,ic3,pin8]

/* This is the gate.level circuit which the interpreter derived from the input wire-list. */
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The gate level circuit is:
inv(_117,_147)
and(_147,_203,_189)
jkbar([287,147],[_203,841],[_851,853])
jkbar([189,273],[245,966],[976,_978])
or(_I17,_203,_273)
or(_147,_245,_287)
and(_203,._245,_301)
and(_117,_301,_315)

/* The sequence of input and output values are correlated to clock cycles for the conve-

nience of the user.

CLOCK CYCLE INPUT VALUES OUTPUT VALUES

1 [1] [0]
2 [0] [0]
3 [03 10]
4 [0] [0]
5 [1] []
6 Ell [0]
7 [1] El]

8 [1] 10]

/* Another test sequence of input values is entered from the keyboard. */

Do you want to input another simulation sequence? (yes./no.)>
yes.

Please enter the new sequence as a list of lists.
One sublist should be entered for each simulation
clock cycle desired. Each sublist should contain
the correct number of input values. Only the
boolean values 0 or 1 may be entered.
Enter your input now. Do not forget to
to follow your entry with a period.

[[Ell'El [11, [I], [0], 0, [0 [0], 1IllI[Ill].



CLOCK CYCLE INPUT VALUES OUTPUT VALUES

1 L1] [0]
2 Ell [o]
3 [] [0]

4 [10] [0]
4 [0] [0]
6 [0] [0]

7 [0] [0]
8 [0] [0]

9 [i] [0]

Do you want to input another simulation

sequence? (yes./ no.) >yes.

Please enter the new sequence as a list of lists.

One sublist should be entered for each simulation
clock cycle desired. Each sublist should contain
the correct number of input values. Only the

boolean values 0 or 1 may be entered.

Enter your input now. Do not forget to

to follow your entry with a period.

/*Intentionally putting an incorrectly formatted input- sequence in. */

Ell, e1] ,[1].

/*This header print-out can be fixed so that it does not show up if an erroneous input

sequence is entered. */

CLOCK CYCLE INPUT VALUES OUTPUT VALUES

ERROR: You did not enter your new input sequence
list in the proper format. Enter the correct form

of the input sequence.

Do you want to try again? (yes./no.)

no.

simulation over

.5.5 The Simulation of Circuit Faults

Prolog can be used to identify faulty components by altering a circuit's operation in

order to mimic improper operation. Components that are suspect need only be labeled a--
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Figure 5.12. NAND-gate circuit "stuck at 1".

such and their operating characteristics altered to reflect the symptoms of the malfunction.

For example, the circuit shown in Figure .5.12, when operating correctly, performs the XOR-

gate function. If the circuit malfunctioned and the output was observed as that listed in

Table 5.4, under the column labeled "Out", the circuit's operation could be simulated

with faulty gates until the simulated operation mimics the observed faulty operation. One

possible problem that would cause the symptoms could be the first NAND-gate of the

circuit stuck at the logic value "I". Figure .5.12 shows .he suspect gate labeled. Suppose

the Prolog definition of the circuit to be altered so that the goal-entry for that particular

gate is replaced by the goal

sa-I(X,Y,TI)

and the operation for the function sa-1 is defined as in Table 5.5. The simulated output

of the circuit would then mimic the observed symptoms. One possibility to correct the

malfunction would be to replace that NAND-gate.

This is a very simplistic example but. through the use of hierarchical descriptions.

complex circuits can be troubleshot, module by module, until the fault\, component ib

isolated.
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Table 5.A. Truth-table for Figure 5.12 with the first NAND-gate -'stuck at 1V.

X Y IT1 Out
0 0 1 0

10 11 1
1 0 1 1

Table .5.5. Truth-table for a NAND-gate, "stuck at V'.

IX Y out
0101 11

1111 1



VI. Specialization

6.1 Introduction

The thrust of this chapter is to provide a Prolog implementation of the specialization

process described by Clocksin [13, 1-11. An extensive review of published literature, going

back to the original publication of Clocksin's article in 1986, could uncover no further

mention of the process. Clocksin outlined a specific example in his article on specialization

(1,11 in order to illustrate the process, along with an algorithm that is very dependent upon

his example. His description of specialization is very general in his example. Nowhere in

his -trticle does he give any details concerning implementation.

6.2 Description of the Problem

Very Large Scale Integrated (VLSI) Circuits are often designed with predefined

generic circuits called standard cells. Circuits designed with standard cells tend to contain

more devices than circuits that are built from basic components because of two reasons:

1. Standard cells need standard interfaces. Each connection between a cell and other

cells must have some form of internal matching interface.

2. Standard cell libraries provide a manageable number of general-purpose cells. Since

the standard cell designer cannot predict in advance the precise functionality required

by some future designer, over-designed cells are usually produced.

After the design of a VLSI circuit has been completed, it is desirable to remove any

extraneous circuitry. The Prolog code described in this chapter will remove all circuitry

that does not directly contribute to the final output of the circuit. Redundant components

are removed by tracing through the circuit's hierarchy and identifying any components

that have unused outputs. A component that has all of its outputs unused can be removed

with impunity. This removal may lead to the removal of other components within the

circuit. This entire process has been named specialization by Clocksin.

An implementation of Clocksin's process of specialization is given in this chapter. The

key to understanding this implementation lies in understanding the recursive properties

of Prolog. As the interpreter proceeds through the levels of recursion, its inherent search

strategy enables it automatically to keep track of where it has been. This allows the

various levels of abstraction to be properly disasembled and reassembled as the interpreter

6.1



moves through a circuit's hierarchy. The programmer needs only to define the upper

level of a circuit's nodal structure and provide the constituent lower-level generic module

templates. The interpreter will make the appropriate unifications and instantiations during

the execution of the program.

Inverters, NAN D, AND, XOR, and OR-gates are considered to be primitive through-

out this chapter. The investigation into Clocksin's process discussed in this chapter will

be confined to combinational circuits.

6.3 Clocksin's Specialization Example

The circuit Clocksin specialized is shown in Figure 6.1. By convention, the circuit

to be specialized must have one or more used input nodes and one or more used output

nodes. Only the submodules of the circuit to be specialized are allowed to have entirely

unused sets of output nodes. Note that one of the output nodes, Co, specified as part of

the submodule M2, is unused. Given the top-level goal of specializing the two-bit adder-

subtractor, defined as

twobit(a1,bl,a2,b2,c,as,sl,s2)

the program proceeds as follows:

1. Inspect the modules of the two-bit adder-subtractor, finding the one-bit adder-

subtractor M2 (see Figure 6.1) with an unused output node, Co. Recursively enter

the definition of M2 with the goal of further investigating it.

2. Tracing the unused output node, Co, of M2 leads to the OR-gate, GI, as shown in

Figure 6.2. Since M2's output is not used elsewhere and an OR-gate is defined as a

primitive gate, it can be removed. Removing OR-gate GI leaves the AND-gate G2

and the XOR-gate G3 with unused output nodes that can also be removed as neither

of their outputs are used elsewhere. The half-adder M4 (see Figure 6.3) now has an

unused output node T1; hence it is entered recursively with the goal of specializing

it. Note that the internal connection, Ti. is hidden from the definition of twobit.

3. Two gates can be removed from the half-adder M4. Both the Inverter G4 and the

NAND-gate G5 are not needed (see Figure 6.3). No other gates or modules with

unused outputs remain in the half-adder M,. so a unique identifier for the specialized

half-adder is generated and M-I's refined definition is entered into the database. The

new module replaces the half-adder M-1 (see Figure 6.4). Control then returns to the

next higher level in the circuit hierarchy.
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4. The remaining half-adder, pea5, of the one-bit adder-subtractir M2. also tas all

unused output node as shown in Figure 6.2. Because of this, te definition of modle

15 is now entered with the oal of specializing it. As was previously done for
half-adder module X-4. the module \115 is reduced to the circuit of Figure 6.4 a-d a

unique identifier generated for the new version. The new version (Figure 6.41} is al--iu

added to the databa.se and control now returns back to the next higher !.evel of Lhe

circuit hierarchy,. that of the one-bit adder-subtractor. All possible speci~zlizations

have been carried aut at this level: therefore control returns to the two-bit a(!er-

subtractor level.

.5. The two-bit adder-subtractor module M2 is repiaced by its specialized versiont ( F,---

ure 6.5) and the search terminates because all unused outputs at every level ha...-

been investiaited. The final hierarchical representation of the circuit is showt lit
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Figure 6.5. Specialized version of the one-bit adder-subtractors.

6.4 The Development of the Specialization Code

This chapter introduces a procedure developed for the specialization of a more gen-

eral class of circuits than that represented by Clocksin's example. A more general approach

must be capable of handling four types of situations relating to specialization:

1. Primitive modules that have at least one used output node cannot be specialized.

2. If all the output-nodes of a higher-level module are used, then that module cannot

be specialized.

3. If all output-nodes of a primitive module are unused, then that module should ')e

removed from the circuit. This removal may result in disconnecting the output nodeb

of other primitive or higher-level modules. These modules may also be able to be

removed.

4. If a higher-level module has some, but not all of its output-nodes unused, it is nec-

essary to recursively descend the modules hierarchy to determine if any submodule.

can he removed.
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The Code. In order for Clocksin's specialization process to work, the user must

specify a circuit definition at the highest level, any submodule definitions, the direction of

submodule ports, and gate status. Gate status is declared explicitly with the primitive

predicate explained earlier in Chapter 4. The direction of submodule ports is declared

with a generic -redicate. The general form of the declaration is

direction(GateType, InputPorts, OutputPorts).

For example, the fact direction(nand(A,B,C) , [A,B] , [C] ) declares thaL any NAN D-gate

fact of arity three that can be found has three ports. The first two arguments define input

ports and the third argument defines an output port.

The direction of the ports must be declared for any submodule but not for the upper

level definition of the circuit to be specialized. Consider the circuit defined in Clocksin's

specialization example (13]. The circuit definition is

twobit(A1,B2,A1,B2,C,As,S1,S2) ;-

addsub(A1,B1,C,As,S1,T),

addsub(A2,B2,T,As ,S2,Z).

The upper-level circuit, twobit, does not need a fact that describes the direction of its

ports. The direction of twobit's ports is determined automatically during the execution of

the process that zpecializes twobit. The direction of twobit is asserted into the database

for future use. This is an additional feature that Clocksin mentioned but said he did not

provide in his implementat;,n of the process. abmodules under twobit must have their

port directions declared. ne specialization of twobit requires direction declarations for

addsub which, in turn. requires declarations of direction for its submodules and so on untlJ

the primitive level of the hierarchy is reached. A complete listing of the definition of twobit

and the ancillary procedures required to specialize twobit can be found in Appendix C.

Section C.1.5, under the code for test4.

Appendix C also contains test examples besides the one for twobit. Four test ca:ses

are considered, including twobit, in order to illustrate the specialization process as it oper-

ates at the various levels of circuit hierarchy. The purpose of each test case is documented.

"Before" and "after" schematic representations are provided along with verbose simulation

sessions that allow the execution of the process to be followed in detail.

The execution of the specialization code given in Appendix C, regardless of the circuit

to be specialized, starts with an invoking call to the procedure scan(Head). The variable
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Head is the definition of the circuit to be specialized. No variables can appear in tile circuit

definition at this level. For example. the two-bit adder-subtractor of Figure 6.1 is described

as two-bit(al,bl, a2,b2,c,as,sl,s2). No unused outputs are allowed to appear in the

circuit definition at this level; therefore if there are any any unused outputs. they must

appear at some lower level in the hierarchy. The top level circuit definition is broken down

into a head predicate and the body goals. Each goal of the body represents one module.

that can be either primitive or higher-level. The head arguments are checked againllt

the goal arguments in order to detect any unused output nodes. A list of the goals and

any unmatched nodes are passed to the analyze(Goals,Acc,Circuit) procedure. The

procedure analyze examines each of the goals and separates those goals with unused output

nodes from those with no unused output nodes. If a goal does not have any unused output

nodes, it is stored in the accumulator (Acc) for future use. If there are no unused output

nodes found after examining all the goals, the original circuit definition is returned to the

scan procedure via the variable Circuit and the process terminates without changing the

original circuit definition.

If a goal is found that has at least one unused output, the goal is sent to another

procedure called specialize. If the goal is primitive, it is removed from the circuit's

definition and the list of unused nodes is updated accordingly. When a module is identified

as being removable, its input nodes must be tested to deteimine if they can be considered

extraneous to the circuit. A simple test is used to determine if a module's input nodes can

be added to the list of unmatched nodes once that module has been removed. Basically. if

there is no other r.quirement , 1 . e input node designator throughout the circuit at an.

level, then tha. input node ca,, ' added to the list of unmatched nodes.

If specialize receives a higher-level module from analyze, then the definition of

the module is recursively entered by resubmitting it to analyze, receiving the specialized

version back, updating the list of unmatched nodes. and returning control back to the orig-

inal invoking call. Analyze re-examines the accumulator each time a module is bpecialized

to ensure that all possible redundant connections are identified. Once the accumula ol

contains only those modules that cannot be further reduced, a new unique identifier i:

generated and asserted into the database. The direction of the new module is also de-

termined and asserted into the database. Although there is no direct use for this featilie

currently, future implementations or applications of this procedure may find it couenienit.

Control then returns to the next level up until control finally reverts to the topmost

level where the results of the process are displayed on the screen. The final circuit i.,
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expressed as a hierarchy of modified modules. The composition of any module can be

found if the built-in procedure listLng(X) (where X is the functor of the desired module)

is used.

6.4.1 A Specialization Session. Appendix C contains the specialization code

(speccode.pro) and four verbose test sessions. The sessions are verbose so the reader

can easily follow the execution of the programn. The last test, test4 is repeated here in

nonverbose form. Comments, that were added to improve the clarity of the session. are

set-off with the standard Prologi syntax for comments /*. ...

/*test4 circuit definition.*/

test4 :
scan(twobit(al,bl,a2,b2,c,as,sl,s2)).

twobit(A1,B1,A2,B2,C,As,S1,S2)

addsub(A1,B1,C,As,S1,T),
addsub(A2,B2,T,As,S2,Unused).

/ *Tlie following submodule definitions are necessary to carry out test4., Section C.1.5
further explains the following proceduires. ~

addsub(A,B,C,As,S,Co)
halfadd(B,C,T1,T2),
halfadd(A,TI,S,Unused),

xor-.gate(A,As,T3),
and..gate(T1,T3,T4),

or~gate(T2,T4,Co).

halfadd(A,B,S,C) :

xor-gate(A,B,S),
nand-gate(A,B,T),

nnot-gate(T,c).
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direction(addsub(A,B,C,As,S,Co),[A,B,C,As],[S,Co]).
direction(halfadd(A,B,S,C),[A,BJ,[S,C]).
direction(or-.gate(A,B,Out) ,[A,B] ,[Out)).
direction(xor-gate(A,B,Out) ,[A,B] ,[Out]).
direction(and..gate(A,B,Out) ,[A,B] ,[Out])
direction(nnot-gate(A,B), [A] ,[B]).
direction(nand-gate(A,B,C) ,[A,B] ,[C]).

primitive(or-gate).
primitive(xor-gate).
primitive(and-gate). primiive~not-ate)
primitive(nnt.gate).

/*Test Results.'/

Script V1.0 session started Mon Oct 14 15:04:07 1991

Microsoft(R) MS-DOS(R) Version 4.01
(C)Copyright Microsoft Corp 1981-1988

A: \THESIS\CODE>prolog

-----------------------------------------------------

I MS-DOS Prolog-1 Version 2.2 1
1 Copyright 1983 Serial number: 0001213 1
I Expert Systems Ltd.
I Oxford U.K.
-----------------------------------------------------

/* Loading the specialization code-file. k

7- speccode] -

speccode consulted
?- test;4.

1* This is the modified circuit definitioin geuerdte(! by the process. Notice that the circuit
is structured hierarchically. The built-ut procedure listinig" is used to expose each level
of the hierarchy. E

asserting foo4(al,bl,c,as,a2,b2,s2,sI):-[-foo3(a2,b2,T2,s2),
addsub(al,bl ,c,as,sl,T2)]
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retracting [a2,b2 ,T2,as,a1,bI,c,as1

asserting direction(foo4(al,bl,c,as,a2,b2,s2,si),

[aI,bI,c,as,a2,b2 , [s2,sl])

Circuit =foo4(al ,bl ,c,as ,a2,b2,s2,sl)

yes

-lisving(foo3).3

foo3(a2,b2,'T2',s2)

[foo2(b2,'T2','T6'),fool(a2,'T6',s2)]

yes

?listing(foo2).

foo2(b2,'T2','T6')

Exor-.gate(b2, 'T2' , T6')]

yes

?-listing(fool).

fool(a2,'T6',s2)

[xor..gate(a2, 'T6' ,s2)]

yes

A:\THESIS\CODE>exit

Script completed Mon Oct 14 15:05:44 1991A
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VII. Results and Recommendations

7. 1 Extraction

7.1.1 Results. The basic principles of circuit extraction were explained in Chap-

ter 4. The extraction process is a fairly simple process if the following assumptions are

made.

1. Extractions will only be done within the current level of the hierarchy. If some of the

constituent components to be extracted lie at one level of the hierarchy and the rebt

lie at another level, to remove the group and reassert some higher-level-level structure

could completely change the overall function of the circuit. Prolog programs that

ensure that the extraction process will not violate connectivity are being developed

[26:4-8.11.

2. Extractions can be done without consideration for critical-path delays. If timing is a

crucial factor in the design of a circuit, extracting groups of components with some

set propagation delay time and inserting a substitute component with a different

delay time could seriously affect the circuit's operation. Extraction programs that

account for changes in critical path delay are being developed at AFIT [25].

7.1.- Recommendations. The extraction process can be used in many areas of dig-

ital circuit design as long as the process is closely monitored by skilled engineers. More

work could be (lone to shift the burden of verifying the correctness of the extraction pro-

cess from the engineer. This will involve d.evelop*ng sophisticated extraction progfa,io O.hat

exploit advanced logic programming techniques. Work is proceeding at AFIT on advanced

applications of logic-programming to circuit extraction [25)

7.2 Simulation

7.2.1 Results. The simulation of digital circuit operation can be quick and efficient

when Prolog is used. TTLS provides a convenient method for the testing of digital circuitb

on the TTL level and could easily be modified to simulate circuits designed with lower-leel

components. Several digital circuit simulators are used at AFIT, but they all operate much

slower than TTLS. TTLS achieves its high simulation speed through the use of "structured-

invocation" and "stack instantiation" (explained in detail in Chapter 5). TTLS's utilization

of structured invocation and stack instantiation distinguish TTLS from other simulators
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developed in the past. An extensive review of the literature did not uncover another

simulator that employed these qualities.

7.2.2 Recommendations. TTLS can be developed into a large-scale digital circuit

simulator capable of providing very fast simulation results over a broad range of TTL

device types. The development of a large scale Prolog-based simulator could be used by

the VLSI laboratory as a simulation tool and by the electronics laboratory as a teaching

aid. The concept of "machine intelligence" could also be embodied in a TTL simulator b.

incorporating some of the principles associated with extraction into the simulator's design.

For example. The simulator could scan the wire-list for groups of gates that perform

a specified function (similar to :h XOR-gate function performed by four NAND-gates

discussed in Chapter 4) a.nd sug- -i. that the four NAND-gates be replaced with one XOR-

gate. This would be a very atti tctive option if XOR-gates were used elsewhere in the test

circuit.

TTLS also has the potential to be developed into an effective fault diagnosis tool.

Given that a device or a number of devices in a circuit were faulty, TTLS could be used

to simulate the defective circuit's operation and detect devices or combinations of devices

capable of causing the malfunction. Specific heuristics could be developed to guide TTLS in

its search for defective components. Because of the completeness of Prolog's built-in search

strategy, all possible combinations of defective devices capable of causing the malfunction

would be found.

7.3 Specialization

7.3.1 Results. The specialization of a general class of electronic circuits was slo,t

to be practical. Critical path timing constraints and hierarchical boundaries are not a

problem in the specialization process as onl% those components that do not directly col,-

tribute to the circuit's operation are removed. The code developed for this thesis ha-

been tested over a range of circuit designs. Each test removed all redundant compocelo:-

and correctly derived the new circuit specification. The original algorithm proposed b

Clocksin was expanded upon by including another predicate, direction. in the scheme.

When a specialized submodule was inspected by the user, it was not easy to distinimguiih

input ports from output ports. However, by storing the input/output status of a special-

ized module's ports in the form of the direction predicate, the status could easilk be

determined. Prior to the development of the specialization code discussed in Chapter f.
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an extensive literature review uncovered several ;ournal ,articles reporting the development

some of the concepts proposed by Clocksin in his original article [12]. but no mention of

any further development of his specialization piocess was found.

7.3.2 Recommendations. The VLSI program at AFIT does not currently possess a

design tool capable of removing redundant circuitry from gate-level designs and rewriting

the circuit's nodal connections to reflect the change. The concept of specialization and the

code developed for this thesis should be integrated into the VLSI program.

Specialization represents only one member of the class of optimization procedures

that could be developed. The specialization code can be enhanced by developing other

programs to perform circuic transformations ba -d on some heuristic other than the mini-

mization of a circuit's gate count. For exa-iple. a program couid be developed that would

perform critical path timing analysis and transform a circuit from a slow or regular-speed

version into a high-speed equivalent. Several different programs could also be developed

to handle the different aspects of ci--uit synthesis based on logic programming techniques.
Circuit synthesis systems such as BC '. 132], and Socrates [22, 29, 21, 30] were developed

several years ago and do perform circuit synthesis, but the bulk of the process is performed

by an expert system usually written in a language other than Prolog. Developing a logic

circuit synthesis system based solely on logic programming would be a large task, but one

worthy to undertake.
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Appendix A. Extraction Code and Test Results

A.1 Extraction Code

A.-.I Prolog Code for the Extraction Process

/* extract.pro

/* This procedure will extract all possible Full Adder */

/* circuits from any input netlist. The procedure will */

/* extract all NAND-gate configurations of XOR-gates

/* first. Once all XOR-gates have been found, full adder */

/* combinations are sought. For simplicity, only NAND */

/* and XOR-gates are used. The built-in procedure

/* "listing(X)" is used to print database entries for */

/* the variable "X" to the screen. */
l* "

/* A typical session would be: A

/* ?- consult('extract.pro'). *A

/* yes

/* ?- consut('netlist.pro). */

/* yes

/. ?- extract-full.adders.

1* yes

listing(fulladder). */
* full-adder(x,y,z,s,c).

/* yes */

/******************code starts here-*

extract.full-adders :-

find-xor.gates,

find.full-adders.

/* The input nodes could be transposed. To compensate,
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/* the code is written so that inputs X and Y are the same *

/* as inputs Y and X. The built-in procedure "fLail" is *

/* used to force the interpreter to find, all possible *

/* solutions. "retract" and "assert" are not undone

1* during the backtracking caused by the "fail" procedure. *

find-.xor..gates :

(nand-gate(X,Y,Tl);

nand..gate(Y,X,Tl)),

(nand~gate(Ti ,Y ,T3);

nand-gate(Y,T1,T3)),

(nanc~gate(X,T1 ,T2);

niand-gate(T1 ,X ,T2)),

(nandgate(IT2,T3,Out);

nand..gate(T3,T2,Out)),

(retract(nand.gate(X,Y,T1));

retract(nand.gate(Y,X,TI))),

(retract(nand.gate(T1 ,Y ,T3));

retract(nand-.gate(Y,T1.,T3))),

(retra,7t(nand.gate(X ,T1 ,T2));

retract (nand..gate(T1 ,X ,T2))),

(retract(nandgate(T2,T3,Out));

retract(nand-.gate(T3,T2,Out))),

assert (xor~ga' eCX ,Y ,Out)),

fail.

find-xor-gates.

/* The search is the same as for the XOR-gates, only the *

/* pattern (what we are looking for) changes.

find-full..adders-
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(xor-.gate(X,Y,T1);

xor-.gate(Y,X,T1)),

xor..gate(T1 ,Z,S)),

(nand..gate(X,Y,T2);

nand-.gate(Y,X,T2)),

(nand-.gate(Z,T1 ,T3);.

nand-gate(T1 ,Z,T3)XI

(niand-.gate(T2,T3,C);.

nanid.gate(T3,T2,C) ).,

(retract(xor-.gate(X ,Y,T1));

retract(xor-.gate(Y,X,Tl))),

(retract(xor-.ga-te(Z,T1.,S));

retract(xor..gate(T1 ,Z,S))),

(retract (nand..gate(X ,Y ,T2));

retract (nand-gate(Y,X ,T2))),

(retract(nand.gate(Z,TI ,T3))%;

retract (n.and-gate(T1 ,ZT,J)),

(retract(nand-.gate(T2,T3,C));

retract(namd..gate(T3,T2,C))),

asser-t(ful-l-.adder(X,Y,Z,S,C)),

fail.

find-.full..adders.
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A.2 Netlist Code

A.2.1 Prolog Code for the Netlist

/. netlist.pro

/* This code descibes the test circuit used with the */

/* procedure "extract.pro" for the full adder extraction */

/* example. Exactly one full-adder is modeled. */

/* First XOR-gate */

nand-gate(x,y,tl). /* note that internal connections are */

nand_gate(y,tl,t3). /* modelled with the letter "t" */

nandgate(x,tl,t2). /* followed by some number. */

nand_gate(t2,t3,t4).

/* second XOR-gate */

nand_gate(t4,z,t1).

nand_gate(t4,tl ,t2).

nand_gate(z,t1,t3).

nand_gate(2,t3,s).

/* remainder of the gates in the full adder */

nand-gate(x,y,t6).

nandgate(z,t4,tS).

nandgate(t6,tS,c).
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A.3 Extraction Test Results

/* TEST RESULTS

/* The program "extract.pro" and "netlist.pro" are needed */

/* to produce the test results given below. "extract.pro" */

/* provides the code to perform the extract function.

/* "netlist.pro" is a netlist of NAND-gates which describe */

/* a full-adder. "extract.pro" will search through any

/* netlist given to it, and extract all the NAND-gate

/* full-adder circuits which it can find. In this example, */

/* "extract.pro" extracts all the full-adders from */

/* "netlist.pro". When a full-adder is found, the */

/* constituent NAND-gates are retracted from the database */

/* and a full-adder is asserted in their place. */

Script V1.0 session started Mon Sep 02 12:44:22 1991

Microsoft(R) MS-DOS(R) Version 4.01

(C)Copyright Microsoft Corp 1981-1988

J:\THESIS\CODE>prolog

+----------------------------------------------------

I MS-DOS Prolog-1 Version 2.2 I

I Copyright 1983 Serial number: 0001213 I

I Expert Systems Ltd.

I Oxford U.K.
+ ---------------------------------------------- +

?- [extract]. /* This command loads "extract.pro". */

extract consulted.

/* The built-in predicate "listing(X)" will find all
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/* expressions for X and print them on the screen. */

?- listing(nandgate). /* Checking the netlist to ensure *1

/* that it was loaded correctly. */

nandgate(x,y,tI)

nand-gate(y,tl,t3)

nand_gate(x,tl,t2)

nandgate(t2,t3,t4)

nand_gate(t4,z,tl)

nand_gate(t4,t1,t2)

nand-gate(z,tl,t3)

nandgate(t2,t3,s)

nandgate(x,y,t6)

nandgate(z,t4,tS)

nand-gate(t6,t5,c)

/* Some before-extraction tests, run on the database*/

/* to ensure there are no unwanted gates present. */

yes

?- listing(xorgate). /* no XOR-gates listed */

yes

?- listing(full-adder). /* no full-adders listed */

yes

?- extract-full-adders. /* invoking the algorithm */

yes

?- listing(nand-gate). /* all NAND-gates are gone */

yes

?- listing(xor-gate). /* all XOR-gates are gone */

yes
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?listing(full-.adder). 1* one full adder was found *

full-adder(x,y,z,s,c)

yes

?- halt. 1* finished *

3: \THESIS\CODE>exit

Script completed Mon Sep 02 12:46:22 1991
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Appendix B. Digital Circuit Simulation Code and I?,sults

B.I Four-Bit Binary Adder Code and Simulation Results

B.1.1 Pivlog Code for a Four-Bit Binary Adder

/* addrcode.pro */

/* This program exploits hierarchical structures in Prolog */

/* by exploring digital circuit relationships. A NAND-gate */

/* is defined as the only primitive element. Groups of

/* NAND-gates are hierarchically formed into XOR-gates. */

/* The XOR-gates coupled with more NAND-gates will form */

/* full-adders. Four full-adders will be linked to form */

/* one four-bit adder. */

/* The following procedure defines the primitive element, */

/* the NAND-gate. Only two-input NAND-gates will be used. */

/* Input signals will be denoted by the variables X and Y. */

/* The output will be denoted by the variable Z. The clause*/

/* is written in the form naid(X,Y,Z). */

!****************code starts ****************************

nand(O,O,1).

nand(O,1,1).

nand(1,O,1).

nand(1,1,O).

/* The following rule hierarchically defines the XOR-gate */

/* function in terms of NAND-gates. Again only two-input */

/* XOR-gates will be considered. Input signals

/* will be denoted by X and Y, output with Z.

xor(X,Y,Z)
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nand(XYTl)
nand(X,Y,T),

nand(X,T1,T3),

nand(T2,T3,Z).

/* Groupings of NAND and XOR-gates are used in the

1* following rule to define a full-adder. The device will *

/* be modeled with three input-terminals, X, Y, and Z.

/* Outputs will be a sum denoted with an S and a carry *

1* denoted with a C.

full-adder(X,Y,Z,C,S)

nand(X,Y,T2),

xor(X,Y,TI),

nand(Z,T1,T3),

xor(Z,T1,S),

nand(T2,T3,C).

/* The following rule defines a four-bit *

/* binary-adder in terms of fLour full-adders. *

bin.adder(bin(X3,X2,XI,XO),bin(Y3,Y2,Y1,YO),bin(C3,S3,S2,Sl,S",,))

full..adder(XO,YO,O,CO,SO),

full..adder(X1,Y1,CO,C1,SI),

full..adder(X2,Y2,C1,C2,S2),

full..adder(X3,Y3,C2,C3,S3).
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B. 1.2 Thur-Bit Binary-Adder Simulation Results

addrrun.pro

/**Script session of addrcode.pro. This session contains *I

/**several sample simulitions of the operation of a

I**four-bit binary-adder.

Script V1.0 session started Mon Sep 09 09:24:35 1991

Microsoft(R) MS-DOS(R) Version 4.01

(C)Copyright Microsoft Corp 1981-1988

3: \>prolog

-----------------------------------------------------

I MS-DOS Prolog-1 Version 2.2 I

L'Copyright 1983 Serial number: 0001213 I

I Expert Systems Ltd.I
I Oxford U.K.
*-----------------------------------------------------

?[addrcode]. I*load addrcode **/addrcode consulted.

/**Test with all inputs set equal to zero**/

C3 = 0bn00,,)bi(,,,0,i(C,3SSO)

S3 = 0

S2 0

S1 =0

More (yin)? y
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no

/**Test binary I added to binary 15 */

?- bin-adder(bin(1,1,1,1),bin(O,O,O,1),bin(C3,S3,S2,S,SO)).

C3 = 1 /** Carry bit is high, all others are low.**/

S3= 0

S2 0

S1=0

SO=0

More (y/n)? y

no

/**Reverse simulation test. Given that all X inputs are set**/

/**to zero and the output is given as binary 1, what must **/

/**value at Y have been ?**/

?- bin.adder(bin(0,O,O,O),Y,bin(0,0,O,0,1)).

Y = bin(O,O,O,1) /**Correct value**/

More (y/n)? y

no

/**Another reverse simulation. If the output was zero, what**/

/**possible input combinations are there ?**/

?- binadder(X,Y,bin(O,O,0,O,0)).

X = bin(O,0,O,O) /** This is the only possible input combination**/

Y = bin(O,0,O,0)

More (y/n)? y

no
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/**With the output set at 1, Find all possible input */

/**combinations.**/

?- binadder(X,Y,bin(O,O,O,O,1)).

X = bin(O,O,O,O) /**One of two**/

Y = bin(O,O,O,1)

More (y/n)? y

X = bin(O,O,O,i) /**two of two**/

Y = bin(O,O,O,O)

More (y/n)? y

no

/**Find all possible input combinations for an output**/

/**eual to binary 2.**/

?- bin-adder(X,Y,bin(O,O,O,i,O)).

X = bin(O,O,O,O) /**There are three possibilities**/

Y = bin(O,O,1,O)

More (y/n)? y

X = bin(O,O,1,O)

Y = bin(O,O,O,O)

More (y/n)? y

X = bin(O,O,O,1)

Y = bin(O,O,O,i)

More (y/n)? y

no

?- halt.

J:\>exit

Script completed Mon Sep 09 09:31:51 1991
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B.2 JK Flip-Flop Code and Simulation Results

B.2.1 Prolog Code for a JK Flip-Flop

jkcode.pro

I** This code simulates the operation of a jk flip-flop. **/

I** Input sequences are assumed to be the same length. **I

/** A list of all state transitions is returned.

/** The predicate is formed as:

/** jksim([JIJr],[KIKr],Ps,[NsINr]).

/**Where: JIJr is the list of inputs to the J-port.

KIKr is the list of inputs to the K-port.

Ps is the present state - Note that the /

present state must be specified inorder to

initiate the session.

NsINr is the list of state transitions which **/

correspond to the sequence of input values

/** A typical session would be:

j** ?-jksim([l,O,1,i,i],1o,i,1,1,Q,],oQ).

I** Q := ,0,1,0,/

more (y/n) y

no

/***************The code starts here************************f

jksim([],[],_,[]). /*boundry condition */

jksim([JIJr],KIKr],Ps,[NsNr])

jkff(J,K,Ps,Ns),

jksim(Jr,Kr,Ns,Nr).
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/*The operation of the 3K flip-flop is defined in boolean**/

/*terms with the following facts.

jkff(O,O,O,O).

jkff (0 ,0, 1, 1)

jkff(0,1,0,O).

jkff (0,1, 1,0).

jkff(1,0,0,1).

jkff (1,0, 1, 1)

jkff(1,1,0,-1).

jkff(1,1,1,0).

again

reconsult (jkcode).
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B.2.2 JK Flip-Flop Simulation Results

jkrun.pro

/** This is the script session of jkcode.pro. This session */

/** contains several sample simulations of the operation of */

a JK flip-flop.

Script VI.0 session started Tue Sep 10 11:40:29 1991

Microsoft(R) MS-DOS(R) Version 4.01

(C)Copyright Microsoft Corp 1981-1988

A:\THESIS\CODE>prolog

----------------------------------------------

I MS-DOS Prolog-1 Version 2.2 1

I Copyright 1983 Serial number: 0001213 I

I Expert Systems Ltd. I
I Oxford U.K. I

---------------------------------------------- +

?- [jkcode]. /** load jkcode.pro *s/

jkcode consulted.

?- jksim([O],[O],O,Q). /* beginning an exhaustive test of all

possible test cases.

Q = [03
More (y/n)? y

no

?- jksim([0],[0O] ,1,Q).

Q = [1]

More (y/n)? y
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no

7jksim([O],E1],O,Q).

Q= [0]

More (yin)? y

no

?- jksim([0] ,[l] ,1,Q).

Q = 101

More (y/n)? y

no

?- jksim([Ell , [0] ,0,Q) .

Q Ell1

More (y/n)? y

no

?- jksim([Ell, [0 , 1,Q).

Q = Ell

More (y/n)? y

no

?- jksim([1 El ,0,Q).

Q Elli

More (y/n)? y

no

?- jksim([1],CI],l,Q).

Q = [0] /* all cases test fine. *

More (y/n)? y

?- jksim([1,0,i,1,i],[0,1,1,1,0],0,Q). /*testing an input *

1* sequence
Q [,0,01

more (y/n)? y
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no

?-halt.

A: \THESIS\CODE>exit

Script completed Tue Sep 10 11:45:50 1991
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B.3 TTLS Pattern-Detection Example Derivation

B.3.1 Derivation of the Pattern-Detection Sequential Network. The derivation of

the Mealy network given in Chapter 5 is discussed here for convenience. The operation of

the pattern-detector is completely described by Figure B.1.

The State-table can be derived directly form the Mealy graph by filling the table in

for the appropriate transitions [43]. The corresponding State-table is

Table B.1. State-table for Figure B.1.

State State Assignment Next State Next State Output Output
AB X = 0 X = I =O0 X = 1

SO 00 01 00 0 0
S1 01 11 00 0 0

S2 11 11 10 0 1
S3 10 01 11 0 0

The next state and output maps can be constructed directly from table B.I. The

general Karnaugh maps of Figure B.2 must now be modified in accordance with the char-

acteristic equation of the type of flip-flop used. The JY flip-flop used in the example. JTI

flip-flops are positive edge triggered flip-flops and are listed in the TTL data-book as type

SN74109. See Table B.2 for the complete definition of allowable .J state transitions. The

JK flip-flop specific Karnaugh maps and the output map along with the collected terms

and appropriate equations are given in Figure B.3.

Table B.2. State transition table for a JT flip-flop.

0 0 0 I

0 0 0 1

0 1 0 0
0 1 1 1

1 0 0 1

1 0 1 0
1 1 1 0

1 1 1 0

The logic equations derived from the maps of Figure B.3 can now be used to derive

the schematic diagram of the network and the Prolog code which simulates the network's

operation. Figure 5.10 gives the gate-level representation of the circuit.
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Ihpt () Output (Out)

1/0 1/0

00/

0/0/0

1/0

Figure B.1. Mealy state-graph for pattern-detector example
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QIQ2 0 1 x 0 1 Q

00 0 0 00 1 0 00 0 0

01 1 0 01 1 0 01 0 0

11 1 1 11 1 0 11 0 1

10 0 1 10 1 1 10 0 0

QI*Q2* Out

Figure B.2. General Karnaug-h maps for Table B.

x x x x
Q1Q2 0 1 QIQ2 0 1 Q1Q 0 1 Q1Q-0 .

00 00 00 OX 00 10 00~ X

01 1 0 01 5c01 X X 01 1 10

10 XX10 0 1 10 1 10 -x
QJ* Q2* QJ* Q2*

I = Q2X' RI=x-i+Q J2=Ql +X' R2 X'

- Next State Q IQ
000 0

01 0 0

11 0 0

10 0 0

Out
Z=ABX

Figure B.3. JuT flip-flop Karnaugh maps
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B.4 TTLS Code

B-11. I TTLS Code and Demonstration Circuit-Files

f*This file sets up the simulation.

?write('Loading TTLSIM.PRO.'),nl,

reconsult(ttlsim),

write('Loading TTLDATA.PRO. '),nl,

reconsult(ttldata),

write(ILoading SETUP.PRO') ,nl,

reconsult (setup),

nl,

wrize('Type "'go'' at the next prbmpt to start the process.'),nl,

write('Be sure to end all commands with a period.'),nl,nl.
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**This file sets up the simulation by supplying the user

/*with some basic information concerning input files and*/

I*asking the user which file he/she desires to load.

go

write('Two demonstration files are provided with'),nl,

write('this simulator. The first'),

write(','),write(' CKTI.PRO'),write(','),

write(' describes a full-adder.'),nl,

write( 'The second'),

write(','),write(' CKT2.PRO'),write(','),

write( 'describes a patterm-detector which') ,ni,

write('generates an output (1) each time the input'),

write(' stream has at least,'),nl,

write('two zeros followed t an odd number of ones.'),nl,

write('If you want to simulate your ou;n circuit file;'),nl,

write('type the file name at the prompt. Your file'),nl,

write('must have the form ''filename.pro'' but type only'),nl,

write('the file name at the prompt. You may return to dos'),nl,

write('at any time by typin.g ''halt.'' at the prolog'),

write(' prompt.'),nl,

nl,

write('Which file wcitz'd you like to silaulate?'),

read(File),

procede(File).

procede(ckti) :

urite('oading CKT1.PRO'),nl,

reconsult(cktl),

run. /** run starts ttlsim.pro**/
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procede(ckt2)

write('Loading CKT2.PRO') ,nl,

reconsult(ckt2),

run.

procede(File)

write('Loading '),write'%L-e),wrize('.pRo'),nIA,

reconsult (File),

run.
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I** Th-s user must number his package types with unique ic **/

/c* numbers if the total number of individual gates exceeds **/

/** the number of gates available on the ic packa.ge. For **/

/** example if six NOR-gates were going to be used the first**/

/** four gates would come from ic. (zince an SN7402 has 4 **/

/** gates.per package) and the remaining two gates from **/

/*t gates from ic2.

/*****.**************************************.********

run starts the simulation process by invoking the

/** procedure buildcircuit(QArgs). QArgs are the arguments**/

/** necessary for the simulation of memory devices. QArgs **/

/ * has the form [[[Q,NotQ],[Q+,NotQ+]] .... ] with two lists**/

I** of two entries for each memory device. The first list **/

/** represents the present state and the present state's **/

I** negation. The second list represents the future state **/

I** and Lhe futurr state's negation.

/** set-up-statefQArgs,States) takes the list of ,zc-mory **/

/** device arguments (QArgs) and inserts the boolean va4 ::e;-*/

/** [0,1] into the list which represents each memory

/** device's future state arguments. These will later be **/

I** shifted into the list representing the present state **/

I** arguments immediately prior to the first cycle of the */

I** simulation. This will effectively clear all memory

P.* devices. in order for any simulation to provide

/* consistent resuits, the memory devices must be

/** initialized to a known state.

I** The final step in the process is performed by

/** evaluate-circuit(Lists,States,OutputList). Lists is the**/

I** list of input test values provided by the user. States **/

/4* is discussed above. OutputList is the list of output **/

/** values which result from the simulation.

/** The last few lines of code allow additional input *X/
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/* values to be entered directly from the keyboard.

run

build-circuit(QArgs),

input.sequence(Lists),

set-up-state(QArgs,States),

write(CLOCK CYCLE'),tab(5), /**formatting the output**/

write('INPUT VALUES'),tab(IO),

write('OUTPUT VALUES'),nl,

evaluate-circuit(Lists,States,O,OutputList),

Dl,

write('Do you wan: to input another simulation'),

write(' sequence? (yes./no.)'),write('>'),nl,

read(Reply),

((Reply = yes,

run-again(QArgs))

write('simulation over')),nl, halt. /** return to dos *i/

/** rur._again(QArgs) allows the user to run additional */

/** tests with new input sequences. The new sequences are

/** input directly from the keyboard. Since the circuit */

/** whose operation is to be simulated has already been **/

/* derived, there is very little computational overhead **/

/** involved in these subsequent simulations; therefore the**/

/** output results are reported almost immediately to the **/

/** user. The structured feature of the circuit's predicate**/

/* is also used here. If the user fails to input a list */

/** with the proper format, the procedure will fail and **/

/** prompt for another input. The failure results from the **/

/* inte:preter's inability to pattern-match

/* the -;ewly formed predicate (with the incorrectly
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f** formatted input list) with the old previously defined **/

/** format.

/** If additional simulations are desired and the new

I** sequence list is formatted properly, subsequent

/** simulations are performed by clearing any memory

/** devices in the circuit and reconfiguring another

/** predicate (Head) with the new input values.

run-again(QArgs) -

n!,

write('Please enter the new sequence as a list of lists.'),nl,

write('One sublist should be entered for each simulation '),nl,

write('clock cycle desired. Each sublist should contain '),nl,

write('the correct number of input values. Only the'),nl,

write('boolean values 0-or I may be entered.'),nl,

write('Enter your input now. Do not forget to'),nl,

,write('to follow your entry with a period.'),nl,

read(NewInput),

set-upstate(QArgs,States),

write('CLOCK CYCLE'),tab(S), /**formatting the output**/

write('INPUT VALUES'),tab(10),

write('OUTPUT VALUES'),nl,

evaluate-circuit(NewInput,States,O,OutDutList),
nl,

write('Do you want to input another simulation'),nl,

write(' sequence? (yes.! no.) '), write('>'),

read(Reply),

((Reply = yes,

run.again(QArgs))

(Reply = no,

write('simulation over'),nl,

halt)) /** return to dos **/

(nl,
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write('ERROR: You did not enter your new input sequence'),nl,

write('list in the proper format. Enter the correct form '),nl,

write('of the input sequence.'),nl,

write('Do you want to try again? (yes./no.)'),nl, read(gewReply),

(NewReply = yes,

run-again(QArgs))

(NewReply = no,

write('simulation over'),nl,

halt)). /** return to dos **/

/** setup-state(Args,States) inserts the boolean values **/

/* [0,i] into each memory device's next-state argument **I

/* list. At a later stage, the values are transferred from */

/* the next-state list into the present-state list,

I** effectively clearing or initializing the memory devices**/

/** prior to the initiation of the simulation.

setup.state( [], []).

set-upstate([[X,Y]IXs],[[X,[0,l]] Zs])

set.upstate(Xs,Zs).

/** buildcircuit(QArgs) constructs a Prolog executable **I

/** logic representation of the circuit under test from the**/

/** user provided wire-list (wire-list(L)). The wire-list **/

/** is first converted into normal Prolog list form.

/** convert.wire-list(wirelist,WireList) performs the */

/* conversion by taking wire-list and removing some of the**/

/** internal Prolog "glue". This enables the modified list * /

/** WireList to be treated as a normal Prolog list. Next **/

/** get-gates(WireList,WireList,Acc,GateList) assembles a

13.20



/** list of all gates occurring in WireList into the list **/

/** GateList. The accumulator (Acc) is used to store the **I

I** Prolog-assigned variable wire names. If a wire name is **/

/** encountered more than once during the construction of **/

/** the gate list, getgates will ignore the repeated

I** entry. This avoids the repeated specification of

I** similar gates.
/** get-inargs(WireList,Acc,InArgs) examines WireList for **/

I** for any wire names which are inputs. The accumulator is**/

I** used for comparison. If a previously picked-up name **/

occurs again, the name is not added to the list inArgs**/

I** in order to prevent repeat entries. The list InArgs is **/

/** built using a technique known as bottom-up. This allows**/

/** the order of the arguments in InArgs to reflect the s*/

/** order of the arguments appearance in WireList.

/** get-outargs(WireList,Acc,OutArgs) works just like

/** getinargs except that WireList is now scanned for any **/

/** o-tput variable wire names.

/** get-q-args(GateList,QArgs) goes through the list of **/

/** gates (GateList) and extracts copies of the arguments **/

/** of any memory device. These are used later to construct**/

/** the head of the circuit and to initialize the memory **/

/** devices prior to simulation.

I** the head (Head) of the circuit is constructed with **f

I** "univ". Each argument in Head represents a structure **/

/** which will be used later in the simulation. By building**/

/** Head as a composite of internal structures, this

/** procedure enables the user to remove old values and */

I** insert new ones with simple, quick Drocedures.

/** unite-circuit(Head,GateList,Circuit) reapplies the **/

/** Prolog "glue" which was removed earlier and unites

/** Head with the "glued" GateList to form a circuit **/

/** description of the original wire_!ist which is **/

/** expressed in executable Prolog code. The new circuit *41

/** (Circuit) is asserted as a rule for future use. Head **/
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f*is also asserted. It will be recalled later not for /

/*the particular variables which it holds but instead *

/ because it specifies the structure which any future */

I*aueries to Circuit must follow.

build-circuit(QArgs)-

write('The wire list is: '),nl,

list-.print(WireList) ,nl,

get-.gates(WireList,WireList,[I] ,GateList),

get.inargs(WireList, [] ,InArgs),

get-.ouargs(WireList,[],OutArgs),

get..q..args (GateLiJst ,QArgs),

Head =.['circuit' I EnArgs ,Our Args ,QArgsifl,

assert(descriptor(Head)),

*uni-ze-.circui;t(Head,GateList,Circuit),

wrize('he gate level circuit is: '),nl,

assert (Circuit),

list..print (GateList) ,nl.

/ convert~ -wire- i st (Head, GoalLis 0 finds the body which *

/*belongs to Head and removes the Prolog rule "glue"; */

/*hence allowing each goal of Body to b6 treated as

/*though it were an element of a list.

convert-wire-l'ist(Head,GoalList):-

clause (Head ,Body),

goals-toliist (Body, GoalList).

/*goals.to-ist(Structure,List) removes the internal *



/** Prolog rule "glue" and allows each goal of Structure **/

/** to be treated as though it were an element of a list. **/

goals-to-list(true,[])

goals-to-list(','(First,Rest),[FirstlConvertRest])

goals-tolist(Rest,ConvertRest).

goals-to-list(Goal,[Goal]).

/** get-gates(WireListWireListAcc,GateList) goes through **/

I** each entry of WireList looking for an output pin.
/** Once an output pin is located, get-gates then searches **/

/** for the corresponding input pins. In the case of

/** devices with more than one output, all constituent

/** input and output pins are located. Once a pin is

/** located the corresponding wire name (expressed as a

/** variable) is determined. The logic function of the

/** particular device owning the pins is determined and a

I** corresponding gate is formed. The gate is described as

a Prolog term with the logic function as the functor, **/

/** the input pin wire names as input arguments, and the **/

/** the output pin wire name or wire names (multiple

I** outputs)as output arguments. For example a .ntegrated **/

I** circuit whose type was SN7400 with Wirel on pin 1,

/** Wire2 on Pin2, and Wire3 on Pin3 would be expressed as

I** nand(_51,_52,_53) where _51 represents Wirel, _52

/** Wire2, and _53 Wire3.

get_gates([] ,-. ..[)

/** This rule is for five-element WireList entries

I** describing a combinational device.
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get.gates([[Name,SIC,OutPin,-, IlXs] ,WireList,Acc, [GateiRest])

not var-member(Name,Acc),

ic(SIC,Type),

not memory(Type),

pins (Type, OutPin ,InPinList),

get-.in.wires(InPinList ,WireList,SIC,InVars),

insert..out-pin(InVars ,Name ,ArgList),

function(Type ,Fcn),

Gate =..EFcnlArgList],

get-gates(Xs,WireList, [Name IAcc] ,Rest).

/*This rule is for three-element WireList entries

I*describing a combinational device.

get-.gates([[Name,SIC,OutPin] IXs] ,WireList,Acc, [GateiRest)

not var..member(Naxne,Acc),

ic(SIC,Type),

not memory(Type),

pins (Type, OutP in, InPinList),

get-in.wires(InPinList,WireList,SIC,InVars),

insert-out-.pin(InVars ,Naxe,ArgList),

function(Type ,Fcn),

Gate =..[FcnlArgList],

get~gates(Xs,WireList, [NainelAcc] ,Rest).

/*This rule is for five-elein.4nt WireList entries

I*describing a memory device.

get-gates(E[Name,SIC,OutPin,.., IlXs] ,WireList,Acc,[GatelRest])

not var..member(Naxne,Acc),

ic(SIC,Type),

memory (Type),

pins (Type, OutPinList ,InPinList),

vai_ -nber(OutPin,OutPinList),
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get-n-.wires(InPinList ,WireList ,SIC,InVars),

get.out-wires(OutPinList,WireList ,SIC,OutVars),

function(Type ,Fcn),

Gate =. .[FcnI [InVars,OutVars, CQplus,NQplusJ]],

append(OutVars ,Acc ,NewAcc),

get..gates (Xs ,WireList, NewAcc ,Rest).

/*This rule is for three-element WireList entries

I*describing a memory device.

get-.gates([(Name,SIC,OutPin] IXsl ,WireList,Acc, [GateiRest])

not var-.member(Name,Acc),

ic(SIC,Type),

memory (Type),

pins (Type, OutPinList,InPinList),

var-member(OutPin,OutPinList),

get-n-.wires (InPinList ,WireList ,SIC ,InVars),

get..out-.wires(OutPinList,WireList ,SIC,OutVars),

function(Type ,Fcn),

Gate =.. [FcnI [InVars,OutVars, EQplus,NQplus)]],

append(OutVars ,Acc,NewAcc),

get-gates(Xs ,WireList,NewAcc,Rest).

/*This rule discards WireList repeat entries.

get-gates([XIXs] ,WireList,Acc,Ans)

get-.gates(Xs ,WireList ,Acc,Ans).

I*get-inwires(InPinList,WireList,SIC,Names) looks through**/

/*WireList for each occurrence of the source integrated*/

/*circuit (SIC) and one of the members of the InPinList.*/
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/** Each time a match is found, the variable name of the **/

/** connecting wire is added to the list of names.

getinwires([] ,.., []).

get-in-wires([XlXs],WireList,SIC,[NamelNames])

(member([Name,_,_,SIC,X],WireList)

member([Name,SIC,X],WireList)),

get.inwires(Xs,WireList,SIC,Names).

/** if the interpreter fails to find a wire name for an

/** input then there are problems. No floating inputs are

/** allowed.

getinwires([XjXs],_,SIC,_)"-

write('WARNING: FLOATING INPUT '),nl,

write(X),write(' of ),

write(SIC),write(' is not connected.'),nl,

write('Correct the wire list and restart the process.'),nl,

halt.

/** getoutwires(OutPinList,WireList,SIC,Names) looks

/* through WireList for each occurrence of the source

I** integrated circuit (SIC) and a member of OutPinList. *I

/** Each time a match is found, the variable name of the **/

/** connecting wire is added to the list of wires (Names). */

/* get-outwires is used by devices with multiple output **I

/** capabilities such as flip-flops.
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getoutwires([1 ,.,.. []).
get.out.ires((XlXs],WireList,SIC,[NamelNames])

(member([Name,SIC,X..., ],WireList)

member([Name,SIC,X],WireList)),

get-out.wires(Xs,WireList,SIC,Names).

/** if an available output is not used, fill it with a

/** place holder. This is analogous to a floating output. **I

get.out-wires([XlXs],WireList,SIC,[ZiNames])

get-outwires(Xs,WireList,SIC,Names).

/** insertoutpin(InPins,OutPin,PinList) inserts the

I** output pin (OutPin) into -the list of input pin

I** arguments (InPins). OutPin is inserted at the end of **/

/** the list as by convention, the input arguments to any **/

/** device are listed first. insert.out.pin is used for **I

I** combinational devices only.

insertout.pin([X],OutPin,[X,OutPin]).

insertout-pin([XIXs],OutPin,[XIResPt]) :-

insert-outpin(Xs,OutPin,Rest).

J

I** get-inargs(WireList,Acc,InArgs) goes through WireList **/

/** and finds each arity three entry which has an input pin **/

as its third argument. This can only be an input. The **/

/** list of input arguments returned to the invoking procedure**/

I** is in a forward order reflecting the order of appearance**/

/** of input wire variable-names encountered as the procedure**/

/** searched through WireList. Note that the procedure

/** will backtrack off the procedure "pins" looking for an **/
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/** in-pin list (InPinList) of which Pin is a member. Also **/

/** of interest is the accumulator. In thiz procedure, the **/

/** contents of the accumulator are used to accumulate the **/

/** variable names of those input-wires which have been

I** previously discovered. Upon discovery of a new input- **/

/** wire name, a comparison is made with the contents of **/

/** the accumulator and if the input-wire was previously **I

/** discovered, it is rejected. This prevents the same wire **/

/** name from appearing more than once in the final list of **/

/** input wire-names. When the procedure reaches the base- **/

/** case, the empty list is returned as a "seal" on the list**!

I** of input wire-names. The list is then returned in the **/

/** proper order and the contents of the accumulator are

/** discarded. This technique is known as constructing a

/** list "bottom-up" and is used in several other procedures.**/

getinargs([ ,Acc,[J]).

get-inargs([[Name,SIC,Pin]IRest],Acc,[NamelArgs])

ic(SIC,Type),

pins(Type,-,InPinList),

member(Pin,InPinList),

not var-member(Name,Acc),

get-inargs(Rest,[NamelAcc] ,Args).

get-inargs([XlXs] ,Acc,Args)

get-inargs(Xs,Acc,Args).

I** get-outargs(WireList,Acc,OutArgs) goes through WireList **/

/** and finds each arity three entry which has an output pin**/

as the third argument. This can only be an output. The **/

/** list of output arguments is returned with an ordering **/

/** which represents the order of appearance of the output **/
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/** wires in WireList. Note that the list is built

I** "bottom-up".

get.outargs ( [], Acc, []).

get-outargs([[Name,SIC,Pin][Ifest],Acc,[NamelArgs])

ic(SIC,Type),

pins(Type,Pin,_),

not varmember(Name,Acc),

getoutargs(Rest,[NamelAcc],Args).

getoutargs([XIXs],Acc,Args)

getoutargs(Xs,Acc,Args).

/** get-q-args(GateList,QArgs) finds each occurrence of a

m, memory device in GateList and extracts the devices

/** arguments. These arguments are in the form of three **I

/** lists [[J,K],[Q,NotQ],[Q+,NotQ+]]. The J,K list is

I** stripped off as this does not carry any information **/

/* which has state-to-state significance. The other two **I

/** lists are kept. The present-state and the next-state do**/

I** have a temporal significance and must be represented in**/

I** the head of the circuit specification as well as in the**/
/** circuit body. These two lists provide the vehicle for **/

/** the propagation of state-to-state information and

/** provide the capability to simulate the memory function.**/

get-q-args([],[]).

get.q-args([X[Xs] ,[RmdrlRest])

X =..[FunctrlArgs],

function (Type,Functr),

memory(Type),

Args [InArgslRmdr],
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get-q-args(Xs,Rest).

get.q-args([XlXs] ,Dummy)

get_q_args(Xs,Dunmy).

/** evaluare.circuit(InputList,States,Count OutPutList) first**/

/** obtains a copy of the previously asserted circuit-head **I

I** Head. Head specified the structure which would be

/** needed in order to successfully query the previously **/

I** developed and asserted definition of the test circuit. **/

I** descriptor(circuit(InList,OutList,QList)) retrieves the**/

/** correct structure with labels for future manipulation. **/

/** updatesttes(QList,States,NewStates) swaps the future**/

/**.state-list of States with the present state-list of **/

/** QList. If this is the initial run through the

/** simulation, this clears all memory devices. If this is **/

I** any other cycle, update-states replaces the old present**/

/** -state values with the new future-state values thereby **/

I** setting up the memory devices for the next cycle.

/** Head is now respecified as having the same functor but **

/** the input sequence as the first argument, the still **/

/* uninstantiated output list (OutList), and the partially**/

/** instantiated list of memory arguments (NewSzates).

/** Head is now ready for this particular simulation cycle.**/

I** test-circuit(Head,NextStates,Output) invokes Head as

an executable goal and instantiates all remaining

/** variables. NextStates can now be extracted to be used **/

/** to setup the memory devices for the next cycle and the **/

/** list output represents the simulated circuit result for**/

/** the particular input list. The simulation is repeated **/

/** until the list of input values is exhausted. Count is **/

/** to keep track of the number of iterations and has no
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I** bearing on the simulation process except to inform the **/

/** user of the output values for a particular clock cycle.**/

evaluate.circuit([],States,_,[]).

evaluate-circuit([XlXs],States,Count,[OutputIRest]) j

descriptor(circuit(InList,OutList,QList)),

update-states(QList,States,NewStates),

Head =..['circuit'l[X,OutList,NewStates]],

testcircuit(Head,NextStates,Output),

Countl is Count + 1,

tab(S),write(Countl),tab(1O), /** formats output**/

write(X),tab(19),

write(Output),nl,

evaluatecircuit(Xs,NextStates,Cou~ttl,Rest).

/*************************************************************I*

/*s update-states(QList,States, NewStates) takes the list **/

/** QList (which has the form [X,Y] where both X and Y are

/** themselves lists) and the list States (which has the */

I** same general form as QList) and constructs a new list **/

/** called NewStates which contains the second list of

/** States followed by the second list of QList. The

/** contribution from States is critical and represents the **I

/** next-state values of the previous simulation cycle.

/** These are used as the present-state values for the next **/

/** QList contributes two variables which have no

/** significance other than place holders for future

/** instantiations. This swapping action acts to clear all **

/** memory devices on initial entry in to the procedure. */

/e* subsequent iterations up-date each memory device by */

/** discarding the old present-state values and replacing **/

/** them with the next-state values.

updat_states([],[,[3).
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updatestates([[W,X]IXs],[[Y,Z]IZs],[[Z,X]IRest])

update.states(Xs,ZsRest).

/** testcircuit(Head,NextStates,Outputs) executes the

I** present cycle's partial instantiation of Head. Head **/

/** is fully instantiated after execution and those

/** portions (structures) of interest (NextStates and

I* Outputs) are extracted.

test-circuit(Head,NextStates,Output) -

goal(Head),

Head =..[L[_,Output,NextStates]]. /**Only keep the pieces**/

/**of interest.

/************************************************************/*
I** goal(Goal) executes Goal and returns the results

I** implicitly tr test-circuit. When Goal is invoked, some **/

/** of its arguwenus are not instantiated. After

/** invocation, all of its variables are instantiated and **/

I** although tl:ey are not passed directly to test-circuit, **/

I** chey are available to test-circuit because both goal **/

/* and test-circuit are on the same stack.

goal(Goal)

Goal.

/************************************************************I*

I** unite-circuit(Head,GateList,Circuit) constructs an
/** executable Prolog rule by uniting Head with GateList. *I

unite.circuit(Head,GateList,(Head:- Lst)):-

goalsstolist(Lst,GateList). /* running it backwards*/
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/** var-member(X,List) determines if the variable X is a

/** member of the list List. This works similar to the

/** conventional member procedure with the exception that **/

I** strict equivalence is required.

var-member(X, YI_])

X==Y.

var-member(X,[_IYs])

var.member(X,Ys).

/** the conventional member procedure.

member(X,[XlXs]).

member(X,[YlYs])

member(X,Ys).

/** the conventional append procedure.

append('] ,X,X).

append([XlXs],Ys,[XlZs])

append(Xs,Ys,Zs).

I** pretty-print(List) prints lists to the screen with a

/** more readable style.

list-print( F]).

list-print([XlXs])

tab(S),write(X),nl,

list-print(Xs).
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/**********************TheEnd*****************



I*The following information was taken from a 7400 series I
I*TTL data book.

/*pins(Type,OutPin,ListOflnpins) describes the pin

/*configuration of each integrated circuit in the

/*data-base. This information is used to determine

/*circuit connectivity.

pinsQ17400' ,pin3, £pinI,pin2]).

pins('7400' ,pin6, [pin4,pin5]).

pinsQ'7400' ,pin8, rpin9,pinlo]).

pins('7400' ,pinll, [pinl2,pinl3]).

pins('7402' ,pin1, [pin2,pin3]).

pins('7402' ,pin4, [pin5,pi4n6]).

pinsQ174O2' ,pinlO, [pin8,pin9]).

pins&17402' ,pinl4, [pinl2,pinl3]).

Dins('7404' ,pin2, rpinl).

pins&17404' ,pin4, rpin3]).

Dins('7404' ,pin6j pin5]).

pins('7404' ,pin8, rpin9]).

pins('7404' ,pinlO, [pinli]).

pins( '7404' ,pinl2, [pinJ3]).

pins('7408' ,pin3, Epin1,pin2]).

pins('7408' ,pin6, [pin4,pinS]).

pins('7408' ,pin8, [pin9,pinio]).

pins('7408' ,pinll, (pinl2,pinl3]).
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pins('7410' ,pinl2, Epinl,pin2,pinl3]).

-pins('7410' ,pin6,[pin3,pin4,pinL]).

pins('7431',pin8, £pin9,pin2OpiD. )

pins( '7432' ,pin3, [pini ,pin2B).

pins('7432' ,pin6,[pin4,pins)).

pins('7432' ,pin, [pinl,pinlJ)

pins('7482' ,Pinhi, pni,pini3).

pins('7486' ,pin3, [pin4,pin2]).

pins('7486' ,pin6,[pin4,pinS]I).

pins('7486' ,pin8, pi-nl,pin3l)

pins('74109' ,[pin6,pin7 , [pin2,pin3]).

pins('74109', [pinlO,pin9] ,tpinl4,pinl3]).

/*s unction(Type,Function) denotes which type of

/*integrated circuit performs which type of logic *
/*function. *

function('7400' ,nand).

fLunction('7402' ,nor).

function('7404' ,inv).

function('7408' ,and).

function.('7410' ,nand).

function('7432' ,or) -

function( '7486' ,xor).

fLunction( '74109' ,jkbar).

I*mimory(Type) lists those devices which belong to the *
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/* general class of devices capable of performing a

I** memory function.

memory(' 74109').

I** The following information describes gate level
/* operation.

I** jkbar([JIn,Kin] ,[Q,QBar] , [Q+,Q+Bar])

/** jkbar is always queried with CJ,K] instantiated; hence **I

no cuts are necassary.

jkbar([0,0],[_,],[0,1]). /** next-state low **/

jkbar([liL],_,],[,]). /** next-state high */

jkbar([0,1],[Q,QBar],[Q,QBar]). /** no change *'/

jkbar([1,0],[Q,QBar],[QBar,Q]). I** toggle **I

/* three-input nand-gate operation.

nand(l,L,1,0) :- .

I** two-input nand-gate operation.

nand(1,1,0) -

nand(_,_,I).

/** two-input and-gate operation.
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and(1,1,1)

andC.,-.,O).

/*two-input nor-gate operation.

nor(O,O,1) :

norC.,-,O).

/*two-input xor-gate operation.

xor(A,B,l)

diff(A,B),

xorC.,-,O).

I*two-input or-gate operation.

or(O,O,O) :

orC-,-,l).

/*inverter operation.

inv(O, 1).

inv(1.,O)

/ *******************THEEN*******'.**B***38*



Appendix C. Specialization Code and Test Results

C.1 Specialization Code

C. 1.1 Scan, Analyze, and Specialize Code

speccode.pro

/** This file contains the Prolog code necessary to carry out **/

/** the process of specialization as described in Clocksin's **/

I** articles on the subject. Only the primary procedures are

I** defined here. Ancillary helper procedures are defined in **/

/** the files named routines.pro and listutil.pro.

/********************code starts

/** scan(Head) starts the specialization process by breaking **/

/** down the upper-level of the circuit and determining if **I

/** specialization can be applied. The head and goal arguments**/

are broken down and compared to find any out arguments **/

/** which are not being used. All internal variable arguments **I

/** are instantiated using the routine gensym.pro during this **/

I** check. Unmatched arguments are asserted into the database **/

/** for future use. Input goal arguments are also asserted for**/

/** future use in determining outputs which are fanned to

/** other modules.

scan(Head) :-

Head =..[PredlHeadArgs],

write('HeadArgs ='),write(HeadArgs),nl,

clause(Head,Body),

write('Body ='),write(Body),nl,

goals-to-list(Body,Goals),

write('Goals ='),write(Goals),nl,

args'.direction(Goals,[],[],GoalArgsin,GoalArgsOut),
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write('GoalArgsIn ='),write(GoalArgsln),nl,

write('GoalArgs'Out ='),write(GoalArgsOut),nl,

unmatched(GoalArgsIn,GoalArgsOut,HeadArgs,[],Unmatched),

write('Unmatched ='),write(Unmatched),nl,

assert(args(Unmatched)),

write('asserting '),write(GoalArgsIn),nl,

assert(inargs(GoalArgsln)),

analyze(Goals,[],Circuit),

write('Circuit ='),write(Circuit).

/* analyze(Goals,Acc,Circuit) is passed the goals of any higher

/* level circuit for further processing. Goals are separated into */

/** those which do not have unmatched out arguments and those who */

/* do. A goal found to contain an unmatched out argument is ,

I immediately sent to specialize to be processed further. Once the */

/* specialized version of the matched goal is returned, it is added **/

/** to the original list of goals in place of the original goal. The **/

/* modified list, which now contains all original goals which did not**/

/* have unused outputs and the specialized version of those who did,**/

I** is sent through analyze again in order to propagate the removal **/

/** through the hierarchy. Analyze continues this cycle until all */

/* goals present in the accumulator have all outputs utilized.

/* analyze([],Acc,NewHead) is evoked when the list of unprocessed */

/* goals is empty. The head of the old rule is replaced with a

/** new head to signify that it is a specialized version. The

/* arguments for the new head are properly configured and then united**/

/** with the list of goals in Acc. Finally the direction for the new **/

I** circuit is configured and asserted into the database.

/* analyze([],Acc,NewHead).

/** This section configures the new head and it arguments. Once found, */

/* the new head is attached to the goals in Acc and asserted into the */

/* database. The direction is also asserted for future reference.

/* This is a recursive procedure and is evoked each
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/*time a level.of the circuit's hierarchy is processed, starting with**/

/*the lowest or base level and working up. NewHead is the name of the**/

/*replacement head generated for the highest level specialized. This*I

**is then returned to scan.

analyze(fl ,Acc,NewHead):

write('Finishing up in analyze'),nl,

write(QAcc = '),write(Acc),nl,

args-direction(Acc, U , U,Argsln,Argsaut),

write('Argsln ='),write(Argsln) ,nl,

write('ArgsOut = ),write(ArgsOut) ,nl,

remove-dups(Argsln,F] ,Templ),

remove-.dups(ArgsOut,[]),Temp2),

rmv-all-dups(Templ,Temp2, F],F] ,HlnArgs,HOutArgs),
write('HlnArgs = ),write(HlnArgs) ,nl,

write('HOutArgs '),write(HOutArgs) ,nl,

append(HlnArgs ,HOutArgs ,NHArgs),

write('NewArgs = '),write(NHArgs) ,nl,

gensym(foo,X),

NewHead =..[XINHArgs],

write('NewHead = '),write(NewHead) ,nl,

scan-acc(Acc,NewAcc),

unite(NewHead,NewAcc,Ans),

write('asserting '),write(Ans) ,nl,

assert(Ans),

retract(inargs(Temp)),

write('retracting '),write(Temp) ,nl,

assert (direction(NewHead,HlnArgs ,HOutArgs)),

write('asserting direction') ,write('(') ,write(NewHead),

write( ,') ,write(HlnArgs) ,write( ,') ,write(HOutArgs),

write(')') ,write(')') ,nl.

I*anal-.ze(Goals,Acc,Circuit).

/*This level of analyze looks at each goal to see if it has any */



/* outputs which are unused. If all outputs are used, then the goal */

/* is stored in Acc for future use. If at least one output is not */

/* used then that goal is passed on to the next level of analyze for**/

/* more processing.

analyze([XlRest],Acc,Circuit)

write('In analyze 1 '),write(X),nl,

direction(X,InArgs,OutArgs),

args(Unmatched),

write('Unmatched args = '),write(Unxmatched),nl,

not matched(OutArgs,Unmatched),

analyze(Rest,[XIAcc],Circuit).

/* analyze(Goals,Acc,Circuit). /

/* The single goal X at this level has at least one unused output.

/* All original gqals which occurred prior to X are stored in Acc and */

/* either they don't have unused outputs at this stage in the process or**/

/* they are specialized versions of previously detected goals which did.**/

/* The goal X is sent to specialize for more processing. The specialized**/

/* version is returned via the argument Ans and appended to the rest of */

/** the yet to be explored list "Rest". This effectively replaces the */

/* old predicate goal with its new specialized version. This list is **I

/*c then added to the Acc and the process started all over again as

/* deleted outputs in the specialized goal returned via Ans could have */

I** propagated back to affect other modules at the same level in the

I** hierarchy. The cycle continues until all modules have been examined *I

/** at least once and no unused outputs exist. Note that a module may */

/* be either primitive or high level at this point. The analyze predicate**/

/* is not interested in the hierarchical status of modules, only the

/* status of the outputs.

analyze([XIRest],Acc,Circuit)

write('In analyze 2 '),write(X),nl,

direction(X,InArgs,OutArgs),
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args(Unmatched),

write('Unmatched args = ),write(Unmatched) ,nl,

matched(OutArgs ,Unmatched),

specialize(X ,Ans),

write('Rest '),write(Rest),nl,

write('Ans = ),write(Ans),nl,

append(Rest ,Ans ,Templ),

write('Templ '),write(Templ),nl,

append(Acc ,Templ ,Temp2),

write( 'Temp2 ='),write(Temp2) ,nl,

analyze(Temp2, U ,Circuit).

I*specialize(X, [P.

I*This rule deals with the modules which have been identified as

/*having at least one unused output and are primitive. Modules of*I

/*this type are deleted from this level of the hierarchy. The

/*deleted modules input port-designators may then be added to the*I

**list of unmatched arguments provided no other module uses that *f
I*designator as an input. The predicate check..args handles the

/*input-argument processing for the deleted modules. The predicate I

I*remove-.dups is included in the process at this stage in order to I

/*improve efficiency by removing repeat arguments from the list of*/

**unmatched arguments.

specialize(X,[J) :

urite('In specialize I1'),write(X) ,nl,

direct ion(X ,InArgs ,OutArg),

X =.. [PredlArgs],

primitive(Pred),

args(Unmatched),

write('Unatched args =') ,write(Unmatched) ,nl,

matched(OutArg ,Unmatched),

inargs (StoredArgs),

check-args(InArgs,[]l,Ans,StoredArgs),

inargs (Stored),
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write('checking inargs '),write(Stored) ,nl,

append(Ans ,Unimatched,Templ),

remove-dups(Templ, U ,Temp2),
retract (args (Unmatched)),

write('retracting '),write(Unmatched) ,nl,

write('asserting all Unmatched args '),write(TeMp2),nl,

assert(args(Temp2)).

I*specialize(X, [Ans2]).

I*This predicate handles those goals which are not primitive and*II

are in need of further processing. Note that new unmatched

I*arguments are added to the list of old unmatched arguments and*I

/*asserted into the database. A common list of unmatched arguments**/

/*is kept and applied to all layerq of the hierarchy. However, the**/

/*list of input arguments (inargs) is only applicable to the layer**/

/*of the hierarchy currently being worked. These arguments are kept**/

/*in the proper place on the argument stack by use of asserta. /

/*Once the unmatched arguments and the new input arguments have */

/*been added to the database, X is then entered into for processing**/

I*at the next lower hierarchical level.

specialize(X, [Ans2])

write('In specialize 2 '),write(X) ,nl,

direction(X,InArgs,OutArgs),

X =..[PredlArgs],

not primitive(Pred),

write('Pred = '),write(Pred),nl,

clause(X,Body),

goals-.to..list(Body,Goals),

write( 'Goals = '),write(Goals) ,nl,

args..direction(Goals, U , U,GoalArgsin ,GoalArgsOut),

unmatched(GoalArgsln,GoalArgsaut ,Args , [],NewUnmatched),

write('Unmatched = '),write(NewUnmatched) ,nl, args(Urnmatched),

write('looking at '),write(Unmatched) ,nl,
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asserta(inargs(GoalArgsln)),

write('assertiig the following Inargs '),write(GoalArgsln),nl,

append (Umate, NewUnmatched, Ans),

remove-dups(Ans,[]l,UnxnatchedArgs),

retractall (args (Unmatched)),

writeCretracting '),write(Unxnatched) ,nl,

write('asserting '),

write(Un~matchedArgs) ,nl,

assert(args(UnmatchedArgs)),

analyze(Goals,F] ,Ans2),

write('Ans2 = '),write(Ans2),nl.

?-reconsult (gensym).

?-reconsult(listutil).

*?-reconsult(routines).

?-reconsult (testcrts).

again

reconsult (speccode).



C.1.2 Specialized Ancillary Routines

routines.pro

I** Routines.pro has all the ancillary routines developed specifically**/
/* for Clocksin's specialization algorithm to work.

/** check-args(InArgs,Acc,Ans,StoredArgs).

This predicate checks the input arguments of a module which is

slated to be deleted to see if any particular arguments are used

elsewhere. If not, then that particular argument can be added to

the list of unused arguments. If the argument fans to other

modules, then it can not be removed. However if all the other

modules which use that particular argument are subsequently removed,
then the argument can be removed. check-args keeps track of the

number of modules which use any one particular argument and will

allow that input designator to be added to the list of unmatched

arguments only when the argument is truly unmatched. **/

check-args([],Acc,Acc,StoredArgs).

check-args([XlRest],Acc,Ans,StoredArgs):-

delete(X,StoredArgs,Templ),

var-member(X,Templ),

retract(inargs(StoredArgs)),

asserta(inargs(Templ)),

checkargs(Rest,Acc,Ans,Templ).

check-args([XlRest],Acc,Ans,StoredArgs):-

check-args(Rest,[XIAcc],Ans,StoredArgs).

I** delete(X,L,Ans).

delete X from L to give an answer which is simply the list L

with one copy of X deleted. More X's may or may not exist in

Ans when delete is complete. **/
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delete(X,O f).

delete(X, CXILJ ,L)

delete(X, [YIL] YINewLstD:)

delete(X,L,NewLst).

I*matched(Listl,List2).

matched checks for membership between two lists. If any element of

listi matches any element of list2 the match succeeds.*I

matched([l]).

matched([XlRest] ,Unmatched)

var-member(X ,Unmatched),

true.

matched([XIRest] ,Unmatched)

matched(Rest ,Unmatched).

/*remove-.dups(List,Acc,Ans).

remove.dups will remove any repeating elements in list and return

individual members in Ans.*/

remove-dups([],Acc,Acc).

remove-.dups([XIRest] ,Acc,Ans)

var-member(X ,Rest),

remove-dups(Rest ,Acc,Ans).

remove-dups([XIRest) ,Acc,Ans)

n6t var-.member(X,Rest),

remove-.dups(Rest, EXIAccI ,Ans).

/*rmv-.all-dups(Listl,List2,Accl,Acc2,Ansl,Ans2).



rmv-all-.dups will search listi and list2 for common members.

When an element is found to be a member of both lists, that

element and all other occurrences are deleted from both lists.

The new lists are returned in Ansi and Ans2.**

rmv..all-.dups([XIRest] ,OutArgs,Accl,Acc2,Ansl ,Ans2):

var-member(X ,autArgs),

delete(X,OutArgs ,Tempi),

rmv-.all-.dups(Rest,Temipi,Acci ,Templ,Ansl,Ans2).

rmv-.all-dups([XIRest] ,OutArgs,Accl,Acc2,Ansl,Ans2):

rmv-a11..dups(Rest,OutArgs, rXIAccl] ,OutArgs,Ansi,Ans2).

/*args-.direction(Listl,Accl,Acc2,Ansi,Ans2).

This predicate takes a list of goals and separates their

arguments into two lists, one with all input arguments and the

other with all output arguments. Input arguments are accumulated

in Acci, output arguments are accumulated in Acc2.*/

args-direction([] ,Acci,Acc2,Acci,Acc2).

args-direction([XIRest] ,Accl,Acc2,Argsin,ArgsOut):

direction(X,InputArgs ,OutputArgs),

append(InputArgs ,Acci ,NewAccl),

append(OutputArgs ,Acc2,NewAcc2),

args..direction(Rest ,NewAcci ,NewAcc2 ,Argsln, ArgsOut).

/*goals-.to-.list(listl,list2).

goals-.tolist converts a list in Prolog internal syntax to a list

which resembles more conventional list notation.**/

goals-.tolist(true,[])
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-goals.to-.list(' ,'(First,Rest) ,[First IConvertRest])

goals-.to-list(Rest ,ConvertRest).

goals-to-.list(Goal, [Goal]).

/*unxnatched(Listl,List2,List3,Acc,Ans).

Unmatched compares List2 with Listi and List3 and stores any

arguments from list2 which do not appear in either list 1 or liJst3

in Acc. Any variables which are not instantiated are fixed with a

unique instantiation provided by gensym.*I

un~matchedC.,[] ,-.,Acc,Acc).

unmatched(GAIn, [XIRest] ,HeadArgs,Acc,Ans)

write(' Looking at '),write(X),nl,

var(X),

(var-.member(X,GAIn);

var..member(X ,HeadArgs)),

gensym&IT',Y),

unmatched(GAIn,Rest ,HeadArgs ,Acc ,Ans).

unmatched(GAIn, [XI Rest] ,HeadArgs ,Acc ,Ans)-

nonvar(X),

(var.member(X,GAIn);

var..member(X ,HeadArgs)),

unxnathed(G~nRes ,Hea~rgs Accn)
unmatched(GAIn, XRest),HeadArgs,Acc.ins)

gensym('T' ,Y),

x=Y,
unmatched(GAIn,Rest,HeadArgs, [XIAcc3 ,Ans).

/*var-.member(Element,List).

w~rks the same as regular membership except this procedure will
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also work for variables.*/

var..member(X, rY Ii)-
X==Y.

var-nember CX, I LI)-

var-member(X,L).

I*scan-.acc(Listl,List2) will remove all terms in listi which

have an arity of zero and return a new list, List2 of the

surviving terms.*/

scan-.acc(C], (1)

scan..accCCXIRestlI ,Rest2)

X =..[PredI [II,

scan..acc(Restl ,Res:2).

scan-.acc(CXIRestlI , XIRest2])

scan..acc(.Restl ,Rest2).

/*unite(Element,List,NewRule).

unite will connect a predicate (flewHead) with a set of goals

(ValidGoals) to form a new rule.*/

unite(Newliead,ValidGoals,(NewHead ValidGoals)) :
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C.1.3 General Utility Programs

listutil.pro

I*All procedures listed here are standard utili-:. procedures.*/

**used by the files speccode.pro or routines.pro.

member(X,[X L).
member(X,[-iTail]):

member(X,Tail).

append([] ,L,L).

apperd([XITail] ,M,[XIXS]):-

append(Tail,M,XS).
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C.1-4 Gensym Code

I*******************GENSYM.pro ***************

/*'gensym(Root,Atom)' creates a new atom, which begins with *I
/*the specified root and ends with a unique integer.

i*Typical session:

?- gensym(foo,X).

X = fool

More (yin)? y

no

?- gensym(foo,X).

X = foo2

More (yin)? y

no

/*this code is taken from the Clocksin & Mellish book,

/*Programming In Prolog, Section 7.8.

gensym(Root ,Atom):

get-nuxn(Root,Num),

naxne(Root,Nainel),

integer~name(Num,Nane2),

append(Namel ,Name2,Name),

name (Atom ,Name).

get-nuin(Root ,Nuin) -

retract (current ..nu(Root ,Numi)),

Hum is Numi + 1,

asserta(current..num(Root , um)).

get-num(Root,l)
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asserta(current-num(Root, 1)).

/* Convert from an integer to a list of characters. *

integer-.naxne(Int ,List) :

integer-name2(Int, [] ,List).

integer-naine2(I ,SoFar, [CI SoFar])-

I < 10,

C is I + 48.

integer-naxne2(I,SoFar,List)

TopHalf is I // 10, 1* Some Prologs may call this ''*
BottomHalf is I mod 10,

C is BottomHalf + 48,

integer-name2(TopHalf, [CiSoFar] ,List).

again :

reconsult (gensym).

?reconsult(listutil). /* Needed for the call to 'append' *
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C.1.5 Prolog Code Definitions of Test Circuits

testcrt.pro

/** This file contains Prolog code which defines several **I

/* circuits used to test the program which implements

/* Clocksin's specialization process.

/** Testl uses a circuit which has unused primitive gates */

/* at the highest level in the hierarchy. These unused */

/* primitive gates are fed by other hierarchical modules. */

/* which may or may not need to be specialized when the */

/** unused primitive modules are removed.

testl

scan(circuitl(a,b,c,as,s,co)).

circuiti(A,B,C,As,S,Co)

halfadd(B,C,T1,T2),

halfadd(A,T1,S,Co),

xor-gate(A,As,T3),

and-gate(T1,T3,T4),

or-gate(T2,T4,Unused).

/** Test 2 looks at a circuit which has a hierarchical **I

/* module consisting of other hierarchical and primitive**/

/* modules. The subordinate hierarchical module does not **/

/* have any unused outputs and can be completely eliminated. **I

test2 "-

scan(circuit2(a,b,c,ass,co)).

circuit2(A,B,C,As,S,Co) :-

halfadd(B,C,Unusedl,Unused2),
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halfadd(A,T3,S,Co),

xor-gate(A,As,T3).

/*Test 3 inputs a circuit where every output is used and*/

no specialization is possible.

test3

scan(circuit3(a,b,c,as's,co)).

circuit3(A,B,C,As,S,Co)

half add(B,C,T1 ,T2),

halfadd(A,T1,S,Co),

*xor-gate(A,As,T3),

and-gate(T1,T3,T4),

or-gate(T2,T4,Co).

/*Test 4 is Clocksin's test as given in the article*I

test4

scan(twobit(al,bl,a2,b2,c,as,sl,s2)).

twobit(Al,BI,A2,B2,C,As,S1,S2)

addsub(Ai,B1,C,As,S1,T),

addsub(A2,B2,T,As,S2,Unused).

addsub(A,B,C,As,S,Co)

halfadd(B,C,T1,T2),

halfadd(A,T1,S,Unused),

xor-gate(A,As,T3),

and-gate (Ti ,T3,T4),

or-.gate(T2,14,Co).
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halfadd(A,B,S,C)

xor-.gate(A,B,S),

nanc-gate(A,B,T),

nnot..gate(T,C).

/*direction(Module,InputPorts,OutputPorts) is used to

/*differentiate input from output ports. direction only needs*/

/*to be defined for lower-level generic modules.

direction(addsub(A,B,G,As,S,Co), [A,B,C,As , [S,Co]).

direction(halfadd(A,B,S,C),[A,B] ,[S,C]).

direction(or-.gate(A,B,Out), [A.B] ,[Out]).

direction(xor.gate(A,B,Out), [A,B] ,[Out]).

direction(and.gate(A,B,Out), ,[A,B] ,[Out]).

direction(nnot.gate(A,B), [A] ,[B]).

direction(nand.gate(A,B,C) ,[A,B] ,[C]).

/*primitive(Gate) identifies gates which are at the lowest*I

I*level of the circuit hierarchy.

primitive(or-gate).

primitive(xor-gate).

primitive(and-gate).

primitive(nnot.gate).

primitive(nand-gate).
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C.2 Specialization Test Results

C.2.1 Test 1 Code and Results

testl results

I** Testl uses a circuit which has unused primitive gates **I

I** at the highest level in the hierarchy. These unused **/

I** primitive gates are fed by other hierarchical modules. **/

I** which may or may not need to be specialized when the **/

I** unused primitive modules are removed.

I*******************testI circuit definition****************/

testl

scan(circuitl(a,b,c,ass,co)).

circuitl(A,B,C,As,S,Co)

halfadd(B,C,Ti,T2),

halfadd(A,TI,S,Co),

xorgate(A,As,T3),

and-gate(TI,T3,T4),

or-gate(T2,T4,unused).

I** The following generic submodule definitions are needed to **I

/** define the subcircuit structure and are explained in

I** section C.I.5.

halfadd(A,B,S,C)

xor-gate(A,B,S),

nand-gate(A,B,T),

nnot-gate(T,C).
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direction(halfadd(A,B,S,C),[A,B],[S,C]).

direction(or-.gate(A,B,Out) ,[A,B] ,[Out]).

direction(xor..gate(A,B,Out), [A,B] ,[Out]).

direction(and-gate(A,B,Out), [A,B] ,[Out]).

direction(nnot-gate(A,B), [A] ,[B]).

direction(nand-gate(A,B,C) ,[A,B] ,[C]).

primitive(or-gate).

primitive(xor-gate).

primitive(and-gate).

primitive(nnot-.gate).

primitive(nand-gate).

Script V1.0, session started Mon Oct 14 13:22:55 1991

Microsoft(R) MS-DOS(R) Version 4.01

(C)Copyright Microsoft Corp 1981-1988

A: \THESIS\CODE>prolog

-----------------------------------------------------

IMS-DOS Prolog-1 Version 2.2

ICopyright 1983 Serial number: 0001213

IExpert Systems Ltd.

IOxford U.K.
-----------------------------------------------------

?- [speccode].

speccode consulted.

?- testi.

HeadArgs =[a,b,c,as,s,co]
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Body =halfadd(b,c,-102,-03),halfadd(a,-02,s,co),xor-.gate(a,as,-118),

and-gateC-i02,-11i8,12S) ,or-.gateC..03,25,-132)

Goals =[halfadd(b,c,-1.02,-1.03),halfadd(a,-102,s,co),xor-.gate(a,as,-1i8),

and-gateC..02,1i8,-125) ,or-gate(-1O3,-1.25,-132)]

GoalArgsln =[iO3,-..25,-l.i2,-1i8,a,as,a,-1.02,b,c]

GoalArgsOut Li-32,-125,-i8 ,s ,co ,-02,-1.03]

Looking at 1..32

Looking at 125

Looking at 11i8

Looking at s

Looking at co

Looking at 102

Looking at 103

Unmatched =[T1]

asserting [T5,T2,T4,T3,a,as,a,T4,b,c]

In analyze I half add(b,c,T4,T5)

Unmatched args = [Ti]

In analyze 1 halfadd(a,T4,s,co)

Unmatched args = [T1]

In analyze 1 xor-gate(a,as,T3)

Unmatched args = [T1]

In analyze 1 and-gate(T4,T3,T2)

Unmatched args = [Ti]

In analyze 1 or-gate(T5,T2,Ti)

Unmatched args = [Ti]

In analyze 2 or-.gate(TS,T2,Tl)

Unmatched args = ETi]

In specialize I or-.gate(TS,T2,Ti)

Unmatched args =[T1]

In check-.argsi

X = TS

Rest '[T2]
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stored inargs =[TS,T2,T4,T3,a,as,a,T4,b,c]

deleting TS

from [T5,T2,T4,T3,a,as,a,T4,b,c]

Tempi = T2,T4,T3,a,as,a,T4,b,c]

in check-.args 2

adding T5

to Acc [I

In check..argsi

X = T2

Rest 0 [
stored inargs = [T5,T2,T4,T3,a,as,a,T4,b,c]

deleting T2

from [TS,T2,T4,T3,a,as,a,T4,b,c]

Tempi = [TS,T4,T3,a,as,a,T4,b,c]

in check-args 2

-adding T2

to Acc [T51

checking inargs [T5,T2,T4,T3,a,as,a,T4,b,c]

retracting [T1]

asserting all Unmatched args [T1,TS,T2]

Rest =F

Ans

Tempi =0

Temp2 = and-gate(T4,T3,T2),xor-gate(a,as,T3) ,halfadd(a,T4,s,co),

half add(b,c ,T4,T5)]

In analyze 1 and-gate(T4,T3,T2)

Unmatched args = [Tl,TS,T2)

In analyze 2 anc-gate(T4,T3,T2)

Unmatched args = [T1,T5,T2]

In specialize 1 anc-gate(T4,T3,T2)

Unmatched args =[Tl,TS,T2]

In check-argsl

X = T4
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Rest [T31

stored inargs CT5,T2,T4,T3,a,as,a,T4,b,c]

deleting T4

from [TS,T2,T4,T3,a,as,a,T4,b,c]

Tempi = [T5,T2,T3,a,as,a,T4,b,c]

checking membership of T4

In [T5,T2,T3,a,as,a,T4,b,c]

retracting [T5,T2,T4,T3 ,a,as ,a,T4,b,c]

asserting [TS,T2,T3,a,as,a,T4,b,c]

In check..argsi

X = T3

Rest =F

stored inargs = CTS,T2,T3,a,as,a,T4,b,c]

deleting T3

from ET5,T2,T3,a,as ,a,T4,b,c]

Tempi = [TS,T2,a,as,a,T4,b,c]

in check-args 2

adding T3

to Acc D]

checking inargs [T5,T2,T3,a,as,a,T4,b,c]

retracting [Ti ,TS ,T2]

asserting all Unmatched args [T2,T5,T1,T3]

Rest = xor.gate(a,as,T3),halfadd(a,T4,s,co) ,halfadd(b,c,T4,TS)]

Ans = 0]

Tempi = xor-.gate(a,as,T3) ,halfadd(a,T4,s,co),halfadd(b,c,T4,T5)]

Temp2 =[xor-.gate(a,as,T3),halfadd(a,T4,s,co) ,halfadd(b,c,T4,T5)]

In analyze 1 xor-gate(a,as,T3)

Unmatched args = [T2,TS,Tl,T3]

In analyze 2 xor-gate(a,as,T3)

Unmatched args = [T2,TS,T1,T3]

In specialize I xor-.gate(a,as,T3)

Unmatched args =T2,TS,T1,T3]

In check-.argsl

X =a

Rest =[as]
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stored inargs = ETS,T2,T3,a,as,a,T4,b,c]

deleting a

from [TS,T2,T3,a,as ,a,T4,b,c]

Templ = [TS,T2,T3,as,a,T4,b,c]

checking membership of a

In [TS,T2,T3,as,a,T4,b,c]

re -acting [TS,T2,T3,a,as,a,T4,b,c]

asserting [T5,T2,T3,as,a,T4,b,c]

In check-argsl

X = as

Rest = 01

stored inargs = ET5,T2,T3,as,a,T4,b,c]

deleting as

from [T5,T2,T3,as,a,T4,b,c]

Tempi [TS,T2,T3,a,T4,b,c]

in check-args 2

adding as

to Acc [0

checking inargs [T5,T2,T3,as,a,T4,b,cJ

retract ing [T2 ,T5 ,T1,T3]

asserting all Unmatched args [T3,Tl,T5,T2,as]

Rest =[halfadd(a,T4,s,co) ,halfadd(b,c,T4,T5)]

Ans = 0

Templ [halfadd(a,T4,s,co) ,halfadd(b,c,T4,T5)]

Temp2 [ halfadd(a,T4,s,co) ,halfadd(b,c,T4,T5)]

In analyze 1 halfadd(a,T4,s,co)

Unmatched args = CT3,Tl,T5,T2,as]

In analyze 1 halfadd(b,c,T4,T5)

Unmatched args =[T3,T1,T5,T2,as]

In analyze 2 halfadd(b,c,T4,TS)

Unmatched args = [T3,Tl,T5,T2,as]

In specialize 1 half add(b,c,T4,T5)

In specialize 2 half add(b,c,T4,T5)

Pred =half add

Goals =[xor.gate(b,c,T4) ,nand-.gate(b,c,-1061) ,nnot-.gate-1O61,T5)I
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Looking at T5

Looking at 1.061

Looking at T4

Unmatched 0 ~

looking at [T3,T1,T5,T2,as]

asserting the following Inargs [T6,b,c,b,c]

retracting [T3,T1,TS,T2,as]

asserting [as,T2,TS,T1,T3]

In analyze 1 xor-.gate(b,c,T4)

Unmatched args = [as,T2,TS,T1,T3]

In analyze 1 nand-gate(b,c,T6)

Unmatched args = [as,T2,TS,T1,T3]

En analyze 1 nnot-gate(T6,TS)

Unmatched args = [as,T2,TS,Tl,T3]

In analyze 2 nnot-.gate(T6,T5)

Unmatched args = [as,T2,T5,Tl,T3]

In specialize 1 nnot-.gate(T6,T5)

Unmatched args =Eas,T2,TS,T1,T3]

In check-argsl

X = T6

Rest 0]

stored inargs = [T6,b,c,b,c)

deleting T76

from [T6,b,c,b,cJ

Tempi = [b,c,b,c]

in check-args 2

adding T76

to Acc [I

checking inargs [T6,b,c,b,c]

retracting [as ,T2 ,TS ,T1 ,T3]

asserting all Unmatched args [T3,T1,TS,T2,as,T6]

Rest =

Ans 0 ~

Tempi = ]

Temp2 = Enand-gate(b,c,T6) ,xor-.gate(b,c,T4)]
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In analyze 1 nand-gate(b,c,T6)

Unmatched args = [T3,T1,T5,T2,as,T6]

In analyze 2 nand-gate(b,c,T6)

Unmatched args = £T3,Tl,TS,T2,as,T6]

In specialize 1 nand-gate(b,c,T6)

Unmatched args = [T3,T1 ,T5,T2,as ,T6]

In check-argsi

X =b

Rest = [c]

stored inargs = [T6,b,c,b,c]

deleting b

from [T6,b,c,b,c]

Tempi = [T6,c,b,c]

checking membership of b

In [T6,c,b,c]

retracting [T6,b,c,b,c]

asserting ET6,c,b,c]

In check-argsl

X =c

Rest = ]

stored inargs = [T6,c,b,c]

deleting c

from [T6,c,b,c]

Tempi = [T6,b,c]

checking membership of c

In [T6,b,c]

retracting (T6,c,b,c]

asserting [T6,b,c]

checking inargs [T6,b,c]

retracting [T3,Tl,TS,T2,as,T6]

asserting all Unmatched args ET6,as,T2,TS,TI,T3]

Rest = [xor-gate(b,c,T4)]

Ans= [

Tempi = Exor-gate(b,c,T4)]

Temp2 = [xor-gate(b,c,T4)]
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In analyze I xor-.gate(b,c,T4)

Unmatched args [ T6,as,T2,TS,Tl,T3]

Finishing up in analyze

Acc =[xor-.gate~b,cT4)

Argsln =[b,c]

Argsaut =[T41

HlnArgs [ b,c]

HautArgs =[T41

NewArgs = b,c,T4]

NewHead =fool(b,c,T4)

asserting fool(b,c,T4) :-[xor-gate(b,c,T4)J

retract ing [T6 ,b ,c]

asserting direction(fool(b,c,T4) ,[b,c] ,[T4]))

Ans2 = fool(b,c,T4)

Rest = [I

Ans = [fooi(b,c,T4)]

Tempi = [fool(b,c,T4)]

Temp2 = [halfadd(a,T4,s,co) ,fool(b,c,T4)I

In analyze 1 halfadd(a,T4,s,co)

Unmatched args = [T6,as,T2,TS,T1,T3]

In analyze 1 fool(b,c,T4)

Unmatched args = [T6,as,T2,T5,TI,T3]

Finishing up in analyze

Acc = [fool(b,c,T4) ,halfadd(a,T4,s,co)]

Argsln =[a,T4,b,c]

ArgsOut E s,co,T4'j

HlnArgs =[a,b,c]

HOutArgs =[co,s]

NewArgs =[a,b,c,co,s]

NewHead =foo2(a,b,c,co,s)

asserting foo2(a,b,c,co,s) :-Efool(b,c,T4) ,halfadd(a,T4,s,co)]

retracting (T5,T2,T3,as,a,T4,b,c]

asserting direction(foo2(a,b,c,co,s),[a,b,c],[co,sB))

Circuit =foo2(a,b,c,co's)

yes
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7- listing(fool).

fool(b,c,'T4') '-

Exor-gate(b,c,'T4')]

yes

?- halt.

A: \THESIS\CODE>exit

Script completed Mon Oct 14 13:24:33 1991

/********************End of Test Results********************/

The before and after circuit diagrams are shown in Figures C.1 and C.2. Note that the

circuit diagram for the specialized version matches the definition of "foo2" as reported

to the screen. The internally defined connections denoted by a "T" designation may

change during the algorithm's execution however, the change is consistently propagated

throughout the circuit in order fo preserve the correctnebs of the interconnections. Testl

differs from Clocksin's test example, given in this appendix as test 4, in that the carry

output, Co, is specified as being used at the uppermost level while the unused output, T3,

remains hidden to the user.
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C.2.2 Test 2 Code and Results

test2 results

/*Test 2 looks at a circuit which has a hierarchical

/*module consisting of other hierarchical and primitive

/*modules. The subordinate hierarchical module does not

I*have any unused outputs and can be completely eliminated.*/

/*******************test2 circuit definition********************/

test2 :

scan(circuit2(a,b,c,as ,s ,co)).

circuit2(A,B,G,As,S,Co)

half add(B ,C ,Unusedl ,Unused2),

halfadd(A,T3,S,Co),

xor-gate(A,As,T3).

/*The following submodule definitions will be needed in *I

I*order to execute test2. Section C.1.5 further explains*/

/*the code.

halfadd(A,B,S,C)

xor..gate(A,B,S),

nand..gate(A,B,T),

nnot..gate(T,C).

direccio. (xor-gate(A,B,Out) ,[A,B , [Out.]).

direction(nnot.gate(A,B) ,[A], [B]).

direction~fnand..gate(A,B,C), [A,B] ,[C]).
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primitive(xor-gate).

primitive(nanc-gate).

primitive(nnot-gate).

Script V1.0 session started Mon Oct 14 14:28:43 1991

Microsoft(R) MS-DOS(R) Version 4.01

(C)Copyright Microsoft Corp 1981-1988

A: \THESIS\CODE>prolog

-----------------------------------------------------

IMS-DOS Prolog-1 Version 2.2

ICopyright 1983 Serial number: 0001213

IExpert Systems Ltd.

IOxford U.K.

-----------------------------------------------------

-[speccode].

speccode consulted

?- test2.

HeadArgs =Ea,b,c,as,s,co]

Body =halfadd(b,c,-02,.103) ,halfadd(a,-109,s,co) ,xor-.gate(a,as,-109)

Goals =[halfLadd(b,c,-j02,-103) ,halfadd(a,-109,s,co) ,xor..gate(a,as,-.109)I

GoalArgsln =FEa,as,a,-109,b,c]

GoalArgsOut =[_109,s,co,_1O2,_103]

Looking at 109

Looking at s

Looking at co

Looking at 102
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Looking at -103

Unmatched =4T3,T2]

asserting [a,as,a,Tl,b,c]

In analyze 1. halfadd(b,c,T2,T3)

Unmatched args =[T3,T2]

In analyze 2 halfadd(b,c,T2,T3)

Unmatched args = [T3,T2]

In specialize 1 half add(b,c,T2,T3)

In specialize 2 half add(b,c,T2,T3)

Pred =half add

Goals = xor-.gate(b,c,T2) ,nand-gate(b,c,-368) ,nnot..gateC.368,T3)]

Looking at T3

Looking at .368

Looking at T2

Unmatched = [D

looking at [T3,T21

asserting the following Inargs [T4,b,c,b,c]

retracting [Ta ,T21

asserting [T2,T3]

In analyze 1 xor-gate(b,c,T2)

Unmatched args = [T2,T3]

In analyze 2 xor-gate(b,c,T2)

Unmatched args = [T2,T3]

In specialize 1 xor-.gate(b,c,T2)

Unmatched args =[T2,T3]

In check-argsl

X = b

Rest = Cc]

stored inargs = [T4,b,c,b,c]

deleting b

from [T4,b,c,b,c]

Templ = [T4,c,b,c]

checking membership of b

In [T4,c,b,c]

retracting [T4,b,c,b,c]
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asserting ET4,c,b,c]

In check-argsi

X =C

Rest [
stored inargs = [T4,cb,c]

deleting c

from [T4,c,b,cJ

Tempi = [T4,b,c]

checking membership of c

In [T4,b,c]

retracting ET4,c,b,c]

asserting [T4,b,c]

checking inargs [T4,b,cJ

retracting [T2 ,T3]

asserting all Unmatched args [T3,T2]

Rest [nand-gate(b,c,T4) ,nniot-gate(T4,T3)]

Ans =[

Tempi = nand-gate(b,c,T4) ,nnot..gate(T4,T3)]

TemP2 =[nand-gate(b,c,T4) ,nnot-gate(T4,T3)]

In analyze I nand-gate(b,c,T4)

Unmatched args = CT3,T2]

In analyze 1 nnot-gate(T4,T3)

Unmatched args = [T3,T21

In analyze 2 nnot-gate(T4,T3)

Unmatched args = [T3,T2]

In specialize 1 nnot-.gate(T4,T3)

Unmatched args = ET3 ,T2]

In check-argsl

X = T4

Rest = 0]

stored inargs = [T4,b,c]

deleting T4

from [T4,b,c)

Tempi = [b,c]

in check-args 2
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adding T4

to Acc ]

checking inargs [T4,b,c]

retracting [T3 ,T2]

asserting all Unmatched args [T2,T3,T4]

Rest = ]

Ans = ]

Tempi = ]

Temp2 = [nand-gate(b,c,T4)]

In analyze 1 nand-gate(b,c,T4)

Unmatched args = [T2,T3,T4]

in analyze 2 nand-gate(b,c,T4)

Unmatched args = [T2,T3,T4]

In specialize 1 nand-gate(b,c,T4)

Unmatched args =[T2,T3,T4]

In check-argsi

X =b

Rest = Cc]

stored inargs = [T4,b,c]

deleting b

from [T4,b,c]

Tempi= [T4,c]

in check-args 2

adding b

to Acc []

In check.argsl

X=c

Rest = C]

stored inargs = [T4,b,c]

deleting c

from [T4,b,c]

Tempi = [T4,b]

in check.args 2

adding c

to Acc [b]
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checking inargs [T4,b,c]

retracting [T2 ,T3 ,T4]

asserting all Unmatched args [T4,T3,T2,b,c]

Rest =[

Ans =[

Tempi = 0I

TemP2 = 0I

Finishing up in analyze

Acc [

Argsln E

ArgsOut D E
HlnArgs =E

HOutArgs 0 [

NewArgs =[

NewHead =fool

asserting fool:-E]

retracting [T4,b ,c]

asserting direction(fool, El . E))
Ans2 = fool

Rest = [halfadd(a,Tl,s,co),xor-gate(a,as,TI)I

Ans =[fool]

Tempi = rhalfadd(a,Tl,s,co),xor-gate(a,as,Tl) ,fooll

Temp2 = [halfadd(a,Tl,s,co) ,xor.gate(a,as,Tl) ,fool]

In analyze 1 halfadd(a)Tl,s,co)

Unmatched args = [T4,T3,T2,b,c]

In analyze I xor-.gate(a,as,TI)

Unmatched args = [T4,T3,T2,b,c]

In analyze 1 fool

Unmatched args = CT4,T3,T2,b,c]

Finishing up in analyze

Acc = Efool,xor-.gate(a,as,TI),halfadd(a,Tl,s,co)I

Argsln [a,Tl,a,as]

ArgsOut =Es,co,Tl]

HlnArgs =[a,as3

HOutArgs = Eco,s]
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NewArgs = [a,as,co,s]

NewHead =foo2(a,as,co,s)

asserting foo2(a,as,co,s) :-[xor..gate(a,as,T1) ,halfadd(a,T1,s,co)]

retracting [a,as,a,Tl,b,c]

asserting direction(foo2(a,as,co,s),[a,as] ,[co,s]))

Circuit =foo2(a,as,co's)

yes

?- halt.

A:\THESIS\CODE>exit

Script completed Mon Oct 14 14:29:41 1991

/******************Endof Test Results******************/

The before and after circuit diagrams are shown in Figures 0.3 and 0.4 respectively.

Note that the redundant higher-level module, the full-adder was successfully removed.
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C.2.3 Test 3 Code and Results

test3 results

I*Test 3 inputs a circuit where every output is used and*f

no specialization is possible.

I****************test3 circuit definition*********************/

test3

scan(circuit3(a,b,c,ass ,co)).

circuit3(A,B,C,As,S,Co)

halfadd(B,C,T1,T2),

halfadd(A,T1,S,Co),

xor-gate(A,As,T3),

and.-gate(T1 ,T3,T4),

or..gate(T2,T4,Co).

I*The following submodule definitions are necessary to *I

run test 3. They are further explained in section C.1.S.**I

halfadd(A,B,S,C) :

xor-.gate(A,B,S),

nand..gate(A,B,T),

nnot..gate(T,C).

direction(halfadd(A,B,S,C) ,[A,B] ,[S,C]).

direction(or-gate(A,B,Out), [A,B] ,[Out)).

direction(xor-.gate(A,B,Out) ,[A,B] ,[Out])

direct ~on(and-gate(A ,B ,Out), [A ,B , [Out).

direction(nnot-.gate(A,B), [A] ,[B]).



direction(nand-gate(A,B,C),[A,B],[C]).

primitive(or-gate).

primitive(xor.gate).

primitive(and-gate).

primitive(nnot-gate).

primitive(nand-gate).

/************************Test Results************************/

Script VI.0 session started Mon Oct 14 14:47:59 1991

Microsoft(R) MS-DOS(R) Version 4.01

(C)Copyright Microsoft Corp 1981-1988

A:\THESIS\CODE>Prolog

Bad command or file name

A:\THESIS\CODE>prolog

----------------------------------------------

I MS-DOS Prolog-I Version 2.2 I

I Copyright 1983 Serial number: 0001213

I Expert Systems Ltd. I

I Oxford U.K.
------------------------------------------------------

?- [speccode].

speccode consulted.

?- test3.

HeadArgs =[a,b,c,as,s,co]

Body =halfadd(b,c,.102,.103),halfadd(a,_102,s,co),xor-gate(a,as,_118),

and.gate(_102,_118,_125),or-gate(_103,_125,co)
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Goals =[halfadd(b,c,102,-103) ,halfadd(a,-102,s,co),xor-gate(a,as,-118),

and-gateC.102, ..118,-125) ,or-gateC.103,-.125,co)]

GoalArgsln L[103,-25,..102,_.118,a,as,a,-102,b,cI

GoalArgsOut =co,-.125,-J'18,s,co,-1O2,-103]

Looking at co

Looking at ..125

Looking at ..118

Looking at s

Looking at co

Looking at 102

Looking at -.103

Unmatched =11]

asserting [T4,Tl,T3,T2,a,as,a,T3,b,c]

In analyze 1 half add(b,c,T3,T4)

Unmatched args = [D

in analyze 1 half add(a,T3,s,co)

Unmatched args = [1
In analyze 1 xor-gate(a,as,T2)

Unmatched args = [0
In analyze 1 and-.gate(T3,T2,T1)

Unmatched args = 0)

In analyze 1 or..gate(T4,T1,co)

Unmatched args = 0

Fin-ihing up in analyze

Acc = I[or-.gate(T4 ,TI ,co) ,and-gate(T3,T2,Tl) .xor..gate~a~as ,T2),

halfadd(a,T3,s,co) ,halfadd(b,c,T3,T4I)j!

Argsin = b,c,a,T3,a,as,T3,T2,T4,Tl1j

Args~ut [ T3,T4,s,cc,T2,T1,co3

HInArgs = b,c,a,as]

HautArgs [ co,sJ

flewArgs (b,c,a,as,co,s]
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NewHead =fool(b,c,a,as,co's)

asserting fool(b,c,a,as,co,s):-[or-gate(T4,Tl,co),al&-gate(T3,T2,Ti),

xor..gate(a,as ,T2) ,halfadd(a,T3 ,s ,co) ,halfadd(b ,c,T3 ,T4)I

retracting [T4,T1,T3,T2,a,as,a,Tj,b,c]

asserting direction(fool(b,c,a~as,co,s),[b,c,a,as],[CO,S]))

Circuit =fool(b,c ,a,as ,co ,s)

yes

?- halt.

A: \THESIS\CODE> exit

Script completed Mon Oct 14 14:49:06 1991

/*****************Endof Test Results******************/

Figure C.5 shows the circuit under consideration.
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Figure C.5. Circuit schematic for test :3 before and after specialization.
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C.2-4 Test 4~ Code and Results

test4 results

/*Test 4 is Clocksin's test as described in Chapter 6

I*****************test4 circuit definition**************************/

test4 :

scan(twobit(al,bl,a2,b2,c,as,sl,s2)).

twobit(A1,Bl,A2,B2,C,As,S1,S2)

addsub (Al,Bi, C ,As, S1,T),

addsub(A2,B2,T,As ,S2,Unused).

/*The following submodule definitions are necessary to*/

/*carry out test 4. Section C.1.5 further explains the*I

I*following procedures.

addsub(A,B,C,As,S,Co)

halfadd(B,C,T1,T2),

halfLadd(A,T1,S,Unused),

xor-gate(A,As,T3),

and-gate(T1 ,T3,T4),

or-.gate(T2,T4,Co).

halfadd(A,B,S,C) :

xor-gate(A,B,S),

nand-gate(A,B,T),

nnot-gate(T,C).
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direction(addsub(A,B,C,As,S,Co),[A,B,C,As],[S,Co).

direction(halfadd(A,B,S,C) ,[A,B] , SC]).

direction(or-gate(A,B,Out), [A,B] ,[Out]).

direction(xor-.gate(A,B,Out) ,[A,B] ,[Outl.).

direction(and-gate(A,B,Out) ,[A,B] ,[Out]).

direction(nnot-.gate(A,B) ,[A] ,[B]).

direction(nand..gate(A,B,C) ,[A,B] ,[C]).

primitive (or-gate).

primitive(xor.gate).

primitive(and-gate).

primitive(nnot..gate).

primitive(nanc-gate).

/.*********************Test Results*********************/

Script V1.0 session started Mon Oct 14 15:04:07 1991

Microsoft(R) MS-DOS(R) Version 4.01

(C)Copyright Microsoft Corp 1981-1988

A:\THESIS\CODE>prolog

-----------------------------------------------------

IMS-DOS Prolog-1 Version 2.2 I

ICopyright 1983 Serial number: 0001213

IExpert Systems Ltd.

IOxford U.K.

-----------------------------------------------------

?- [speccode].

speccode consulted



?-test4.

HeadArgs =[a1,b1,a2,b2,c,as,si,s2]

Body =addsub(ai,bl,c,as,sl,-121) ,addsub(a2,b2,-121,as,s2,-131)

Goals =[addsub(al,bl,c,as,sl,-121) ,addsub(a2,b2,-121,as,s2,_131))

GoalArgsln -[a2,b2,-121,as,a1,bi ,c,as]

GoalArgsOut =[s2,...131,s,-121]

Looking at s2

Looking at -131

Looking at si

Looking at -.121

Unmatched =[T13

asserting [a2,b2,T2,as,a1,bi ,c,as]

In analyze 1 addsub(a1,bi,c,as,s1,T2)

Unmatched args = [Ti]

En analyze 1 addsub(a2,b2,T2,as,s2,T1)

Unmatched args = [Ti]

In analyze 2 addsub(a2,b2,T2,as,s2,Tl)

Unmatched args = [T1]

In specialize 1 addsub(a2,b2,T2,as,s2,Tl)

In specialize 2 addsub(a2,b2,T2,as,s2,Tl)

Pred =addsub

Goals [I. >e-dd(b2,T2,-359,-36O) ,halfadd(a2,-359,s2,..268),

xor..gate(,' 2 is,-375) ,and-gate(-359,-375,-382) ,orgate(_360,_382,Ti)]

Looking at Ti

Looking at -.382

Looking at -375

Looking at s2

Looking at -368

Looking at -.359

Looking at -.360

Unmatched = [T51

looking at [Ti]

asserting the following Inargs [T7,T3,T6,T4,a2,as,a2,T6,b2,T2]



retracting [TI]

asserting T5,T,]

In analyze 1 halfadd(b2,T2,T6,T7)

Unmatched args = [T5,T1]

In analyze 1 halfadd(a2,T6,s2,TS)

Unmatched args = [TS,Ti]

In analyze 2 halfadd(a2,T6,s2,TS)

Unmatched args = [T5,T1]

In specialize 1 halfadd(a2,T6,s2,T5)

In specialize 2 halfadd(a2,T6,s2,TS)

Pred = halfadd

Goals = [xor-gate(a2,T6,s2),nand-gate(a2,T6, _801),nnotgate(_801,TS)]

Looking at T5

Looking at _801

Looking at s2

Unmatched = [

looking at [T5,T1]

asserting the following Inargs IT8,a2,T6,a2,T6]

retracting [T5 ,T1]

asserting [T1,T8]

In analyze 1 xor-gate(a2,T6,s2)

Unmatched args = [T1,T5]

In analyze I nand-gate(a2,T6,T8)

Unmatched args = [TI,T5]

In analyze 1 nnot-gate(T8,T5)

Unmatched args = [T1,TS]

In analyze 2 nnot-gate(T8,TS)

Unmatched args = [T1,T8]

In specialize I nnot-gate(T8,TS)

Unmatched args =[T1,TS]

In check-argsl

X = T8

Rest = []

stored inargs = [T8,a2,T6,a2,T6]

deleting T8



from [T8,a2,T6,a2,T6]

Tempi = [a2,T6,a2,T6]

in check-args 2

adding T8

to Acc []

checking inargs [T8,a2,T6,a2,T6]

retracting [Ti ,T5]

asserting all Unmatched args [T5,Ti,T8]

Rest = []

Ans = [

Tempi []

Temp2 = [nand-gate(a2,T6,T8),xorgate(a2,T6,s2)]

In analyze I nand-gate(a2,T6,T8)

Unmatched args = [TS,T1,T8]

In analyze 2 nandgate(a2,T6,T8)

Unmatched args = [T5,Ti,T81

In specialize I nand-gate(a2,T6,T8)

Unmatched args =[TS,Tl,T8]

In check-argsl

X =a2

Rest = [T6]

stored inargs = [T8,a2,T6,a2,T6]

deleting a2

from [T8,a2,T6,a2,T6]

Tempi = [T8,T6,a2,T6]

checking membership of a2

In [T8,T6,a2,T6]

retracting [T8,a2,T6,a2 ,T6]

asserting [T8,T6,a2,T6]

In check-argsl

X = T6

Rest = 0

stored inargs = [T8,T6,a2,T6]

deleting T6

from [T8,T6,a2,T6J
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Tempi = [T8,a2,T6]

checking membership of T6

En [T8,a2,T6]

retracting [T8 ,T6 ,a2 ,T6]

asserting [T8,a2,T6]

checking inargs [T8,a2,T6]

retract ing ETS ,T1 ,T81

asserting all Unmatched args [T8,T1,T5]

Rest = xor-gate(a2,T6,s2)]

Ans = [0

Tempi = xor-gate(a2,T6,s2)]

Temp2 [ xor-.gate(a2,T6,s2)]

In analyze 1 xor..gate(a2,T6,s2)

Unmatched args = [T8,T1,TS]

Finishing up in analyze

Acc = [xor-.gate(a2,T6,s2)]

Argsln =[a2,T6]

ArgsOut [s2]

HlnArgs = a2,T6]

HOutArgs = s2]

NewArgs =[a2,T6,s2]

flewHead =fool(a2,T6,s2)

asserting fool(a2,T6,s2) :-(xor..gate(a2,T6,s2)I

retract ing [T8 ,a2 ,T6]

asserting direction(fool(a2,T6,s2) ,[a2,T6] ,[1s2J))

Ans2 = fool(a2,T6,s2)

Rest = [xor-.gate(a2,as,T4) ,and-gate(T6,T4,T3) ,or-.gate(T7,T3,Tl)]

Ans =[fool(a2,T6,s2)]

Tempi = [xor-gate(a2,as,T4) ,and-gate(T6,T4,T3) ,or..gate(T7,T3,T1),

fooi(a2,T6,s2)]

TeMp2 = [halfadd(b2,T2,T6,T7),xor-.gate(a2,as,T4),afld-gate(T6,T4,T3),

or-.gate(T7,T3,Tl) ,fool(a2,T6,s2)]

In analyze 1 halfadd(b2,T2,T6,T7)



Unmatched args =[T8,T1,T5]

In analyze 1 xor-.gate(a2,as,T4)

Unmatched args = [T8,T1,T5]

In analyze 1 and-gate(T6,T4,T3)

Unmatched args = [T8,T1,T5]

In analyze 1 or-gate(T7,T3,Tl)

Unmatched args = [T8,T1,T5]

In analyze 2 or-gate(T7,T3,T1)

Unmatched args = [T8,T1,T5]

In specialize 1 or-.gate(T7,T3,Ti)

Unmatched args =CT8,T1,T5]

in check-.argsl

X = T7

Rest = [T33

stored inargs =[T7,T3,T6,T4,a2,as,a2,T67b2,T2]

deleting T7

from [T7,T3,T6,T4,a2,as,a2,T6,b2,T2]

Templ [T3,T6,T4,a2,as,a2,T6,b2,T2]

in check-.args 2

adding T7

to Acc F

In check-.argsl

IX = T3

Rest 0 F

stored inargs = T7,T3,T6,T4,a2,as,a2,T6,b2,T2]

deleting T3

from FT7,T3,T6,T4,a2,as ,a2,T6,b2,T2]

Templ = [T7,T6,T4,a2,as,a2,T6,b2,T2]

in check-.args 2

adding T3

to Acc CT7]

checking inargs FT7,T3,T6,T4,a2,as,a2,T6,b2,T2]

retracting [T8 ,T1 ,TS

asserting all Unmatched args FT5,T1,T8,T7,T3]

Rest = [fool(a2,T6,s2)]



Ans [0
Tempi =[foo1(a2,T6,s2)]

Temp2 = [and-gate(T6,T4,T3) ,xor-gate(a2,as,T4) ,halfadd(b2,T2,T6,T7),

fool(a2,T6,s2)]

In analyze 1 and-gate(T6,T4,T3)

Unmatched args = [TS,T1,T8,T7,T31

In analyze 2 and-gate(T6,T4,T3)

Unmatched args = [T5,Tl,T8,T7,T3]

En specialize I and-gate(T6,T4,T3)

Unmatchec- : gs =[TS,T1,T8,T7,T3]

In check-?-:gsl

X = T6

Rest = [:T41

stored inargs = E-17,T3,T6,T4,a2,as,a2,T6,b2,T2I

deleting T6

from [T7,T3,T6,T4,a2,as,a2,T6,b2,T2]

Tempi = CT7,T3,T4,a2,as,a2,T6,b2,T2]

checking membership of T6

In [T7,T3,T4,a2,as,a2,T6,b2,T23

retracting ET7,T3,T6,T4,a2,as,a2,T6,b2,T2j

asserting CT7,T3,T4,a2,as,a2,T6,b2,T2)

In check-.argsl

X = T4

Rest = 0)

stored inargs = ET7,T3,T4,a2,as,a2,T6,b2,T2]

deleting T4

from [T7,T3,T4,a2,as,a2,T6,b2,T2J

Tempi = T7,T3,a2,as,a2,T6,b2,T2]

in check-args 2

adding T4

to Acc [I

checking inargs CT7,T3,T4,a2,as,a2,T6,b2,T2]

retracting (TS ,T1,T8 ,T7 ,T33
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asserting all Unmatched args [T3,T7,T8.T1,T5,T41

Rest = xor.gate(a2,as,T4),halfadd(b2,T2,T6,T7),fool(a2,T6,s2)]

Ans 0

Tempi = [xor-.gate(a2,as,T4),halfadd(b2,T2,T6,T7),fool(a2,T6,s2)]

Temp2 = [xor-gate(a2,as,T4),halfadd(b2,T2,T6,T7),fool(a2 ,T6,s2)]

In analyze 1 xor-gate(a2,as,T4)

Unmatched args = [T3,T7,T8,T1,T5,T41

In analyze 2 xor-.gate(a2,as,T4)

Unmatched args = T3,T7,T8,T1,T5,T4]

In specialize 1 xor..gate(a2,as,T4)

Unmatched args = ET3,T7 ,T8 Ti ,TS ,T4]

In check-argsi

X = a2

Rest = [as]

stored inargs [ T7,T3,T4,a2,as,a2,T6,b2,T2]

deleting a2

from [T7,T3,T4,a,.,as,a2,T6,b2,T2]

Tempi = [T7,T3,T4,as,a2,T6,b2,T23

checking membership of a2

In [T7,T3,T4,as,a2,T6,b2,T2]

retracting [T7,T3,T4,a2,as,a2,T6,b2,T2]

ass.,:- 'g [T7,T3,T4,as,a2,TL6,b2,T2]

In check..argsl

X = as

Rest =C

stored inargs =[T7,T3,T4,as,a2,T6,b2,T2]

deleting as

from CT7,T3,T4,as,a2,T6,b2,T2)

Tempi = CT7,T3,T4,a2,Tb,b2,T2]

in check-.args 2

adding as

to Acc [)

checking inargs CT7,T3 ,T4,as ,a2,T6 ,b2,T2]

retracting CT3,T7,T8,T1,T5,T4)

asserting all Unmatched args CT4,TS,T1,T8,T7,T3,as)
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Rest [ half add(b2,T2,T6,T7) ,fool(a2,T6,s2)]

Ans 0 F
Tempi = [halfadd(b2,T2,T6,T7) ,fool(a2,T6,s2))

Temp2 = [halfadd(b2,T2,T6,T7) ,fool(a2,T6,s2))

In analyze 1 half add(b2,T2,T6,T7)

Unmatched args = [T4,T5,T1,T8,T7,T3,as]

In analyze 2 half add(b2,T2,T6,T7)

Unmatched args = (T4,T5,T1,T8,T7,T3,as]

In specialize 1 halfadd(b2,T2,T6,T7)

In specialize 2 half add(b2,T2,T6,T7)

Pred =half add

Goals = xor-.gate(b2,T2 ,T6) ,nand-.gate(b2,T2 ,-.2022) ,nnot-.gateC.2022 ,T7)]

Looking at T7

Looking at -2022

Looking at T6

Unmatched [0

looking at [T4,TS,T1,T8,T7,T3,as]

asserting the following Inargs ET9,b2,T2,b2,T2]
retracting [T4,T5,Tl,T8,T7,T3,as]

asserting [as,T3,T7,T8,T1,TS,T4]

In analyze 1 xor..gate(b2,T2,T6)

U-matched args = [as,T3,T7,T8,T1,T5,T4]

In analyze 1 nand-gate(b2,T2,T9)

Unmatched args = Cas,T3,T7,T8,T1,T5,T41

In analyze 1 nnot-gateCT9,T7)

Unmatched args = I[as,T3,T7,T8,T1,TSJ4]

In analyze 2 nnot-.gate(T9,T7)

Unmatched args = [as,T3,T7,T8,T1,TS,T4)

In specialize 1 nnot..gate(T9,T7)

Unmatched args =Cas,T3,T7,T8,T1,TST4j

In check-.argsl

X = T9

Rest = 0]

stored inargs = [T9,b2,T2,b2,T2)

deleting T9
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from [T9,b2,T2,b2,T2]

Tempi = [b2,T2,b2,T2]

in check-.args 2

adding T9

to Acc [
checking inargs [T9,b2,T2,b2,T2]

retracting [as,T3,T7,T8,T1,T5,T4]

asserting all Unmatched args [T4,T5,T1,T8,'17,T3,as,T9]

Rest [D

Ans =[

Tempi =C

Temp2 =[nand-.gate(b2,T2,T9) ,xor-.gate(b2,T2,T6)]

In analyze 1 nand..gate(b2,T2,T9)

Unmatched args = [T4,T5T1,T8,T7,T3,as,T91

- 4In analyze 2 nand-.gate(b2,T2,T9)

Unmatched args = [T4,TS,Tl,T8,T7,T3,as,T9]

In specialize I nand..gate(b2,T2,T9)

Unmatched args =UT4,TS,T1,T8,T7,T3,as,T9]

In check-argsl

X = b2

Rest =[T21

stored inargs [ T9,b2,T2,b2,T2]

deleting b2

from 1T9,b2,T2,b2,T2]

Tempi = CT9,T2,b2,T2]

checking membership of b2

In [T9,T2,b2,T2]

retracting CT9 ,b2 ,T2,b2 ,T2]

asserting [T9,T2 ,b2,T2]

In check-argsl

X = T2

Rest=0

stored inargs = T9,T2,b2,T2]

deleting T2

from [T9,T2,b2,T2]



Tempi =[T9,b2,T2]

checking membership of T2

In [T9,b2,T2]

retracting [T9 ,T2 ,b2 ,T2]

asserting [T9,b2,T2]

checking inargs £T9,b2,T21

retracting T ,TS,T1 ,T8 ,T7 ,T3 ,as,T9]

asserting all Unmatched args [T9,as,T3,T7,T8,TI,T5,T43

Rest =[xor-.gat(b2,T2,T6)]

Ans

Tempi = xor-.gate(b2,T2,T6))

TemD2 =[xor..gate(b2,T2,T6)]

In analyze I xor-.gae(b2,T2,T6)

Unmatched args = CT9,as,T3,T7,T8,?T1,TST4]

Finishing up in- analyze

Acc =[xor-.gate(b2,T2,T6)]

Argsln = b2,T21

ArgsOut £T6]

HInAras Eb2,T2]

fiOutArgs = T6]

NewArgs [b2,T2,T61

NewHead foo2(b2,T2,T6)

asserting foo2(b2,T2 ,T6):- [xor-.gate(b2,T2,T6)I

retracting ETS ,b2 ,T2]

asserting direction(foo2(b2,T2,T6) ,[b2,T2] , £T6]))

Ans2 = foo2(b2,T2,T6)j

Rest = [fooi(a2,T6,s2)J

Ans = [Efoo2(b2,T2,T6)]

Tempi = fool(a2,T6,s2) ,foo2(b2,T2,T6)-j

Temp2 = [Efool(a2,T6,s2) ,fLoo2(b2,T2,T6)]'

In analyze 1 faol(a2,T6,s2)

Unmatched args = (T9,as,T3,T7,T8,T1,T5,T4J

In analyze 1 'foo2(b2,T2,T6)

Unmatched args = CT9,as,T3,T7,T.O,Tl,T5,T4]

Finishing up in analyze



C
Acc = foo2(b2,T2,T6),foo1(a2,T6,s2)]

Argsln [a2,T6,b2,T2]

ArgsOut = s2,T6]

HlnArgs = a2,b2,T2]

HOutArgs =[s2]

NewArgs = a2,b2,T2,s2]

NewHead foo3(a2,b2,T2,s2)

asserting foo3(a2,b2,T2,s2) :-[foo2(b2,T2,T6) ,fool(a2,T6,s2)]

retracting [T7,T3,T4,as,a2,T6,b2,T2]

asserting direction(foo3(a2,b2,T2,s2) ,[a2,b2,T2] ,[s2]))

Ans2 =foo3(a2,b2,T2,s2)

Rest U
Ans =[foo3(a2,b2,T2,s2)]

Tempi [foo3(a2,b2,T2,s2)]

Temp2 =[addsub(al,bl,c,as,sl,T2),f003(a2,b2,T2,s2)I

In analyze 1 addsub(al,bl,c,as,sl,T2)

Unmatched args = [T9,as,T3,T7,T8,T1,T5,T43

In analyze 1 foo3(a2,b2,T2,s2)

Unmatched args =[T9,as,T3,T7,T8,Ti,T5,T4]

Finishing up in analyze

Acc = [foo3(a2,b2,T2,s2),addsub(al,b1,c,as,sl,T2)I

Argsln '[al,bl,c,as,a2,b2,T2]

ArgsOut [ si,T2,s2]

HlnArgs Eal,b1,c,as,a2,b2]

HOutArgs =[s2,s1]

NewArgs Eal ,bl ,c,as,a2,b2,s2,s11

NewHead =foo4(al,bl,c,as,a2,b2,s2,sl)

asserting foo4(al,bi,c,as,a2,b2,s2,sl):-Efoo3(a2,b2,T
2 ,s2),

addsub(al ,bl ,c,as ,s1.,T2)1

retracting [a2,b2,T2,as,al ,b1 ,c,as]

asserting direction(foo4(a1,bl,c,as,a2,b2,s2,s1),

[a1,b1,c,as,a2,b2] ,[s2,s1]))



Circuit =foo4(a1,bI,c,as,a2,b2,s2,s1)

yes

?- listing(foo3).

= foo3(a2,b2,'T2',s2)

Efoo2(b2,'T2','T6'),fool(a2,'T6',s2)I

yes

?-listing(foo2).

foo2(b2,'T2','T6')

[xor-gate(b2, 'T2' , T6')]

yes

?listing(fool).

fool(a2,'T6',s2)

[xor-gate(a2, 'T6' ,s2)]

yes

?-halt.

A: \THESIS\CODE>exit

Script completed Mon Oct 14 15:05:44 1991

/********************End of Test Results********************/

The before and after circuit diagrams are shown in Chapter 6. Note that the built

in predicate listing(X) was used to show the comnposition of modlules which have been

specialized.
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